先了解什么是异构并行计算
CPU与GPU的区别
1、CPU即中央处理器

2、GPU即图形处理器。


总结

-
Cache, local memory: CPU > GPU -
Threads(线程数): GPU > CPU -
Registers: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。 -
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU。
-
GPU拥有的核心的数量要比高端CPU的核心数量多很多。 虽然GPU的每个运算核心没有CPU的每个运算核心工作频率高,但是GPU的总体性能-芯片面积比以及性能-功耗比比CPU高很多,所以在处理越多线程的并行计算的任务性能高很多。 -
GPU能够通过大量并行线程之间的交织运行隐藏全局的延迟,除此之外GPU还拥有大量的寄存器、局部存储器和cache等用来提升外部存储的访问性能。 -
在传统的CPU运算中,线程之间的切换是需要很大的开销的,所以在开启了大量线程的算法的效率是很低的。 但是,在GPU中,线程之间的切换是很廉价的。
▍APU
▍BPU
▍CPU
▍DPU
▍EPU
▍FPU
▍GPU
▍HPU
▍IPU
▍KPU
▍MPU
▍NPU
▍OPU
▍PPU
▍QPU
▍RPU
▍SPU
▍TPU
▍UPU
▍VPU
▍WPU
▍ZPU
▍其他非 xPU 的 AI 芯片
-END-
﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌
整理自网络,整理/排版:付斌,参考资料:物联网智库,中国科普博览,半导体行业观察,架构师技术联盟等,本文仅作为科普相关技术知识。
往期好文合集
