BN、LN、IN、GN

常用的Normalization方法主要有:Batch Normalization(BN,2015年)、Layer Normalization(LN,2016年)、Instance Normalization(IN,2017年)、Group Normalization(GN,2018年)。它们都是从激活函数的输入来考虑、做文章的,以不同的方式对激活函数的输入进行 Norm 的。

我们将输入的 feature map shape 记为[N, C, H, W],其中N表示batch size,即N个样本;C表示通道数;H、W分别表示特征图的高度、宽度。这几个方法主要的区别就是在:

  1. BN是在batch上,对N、H、W做归一化,而保留通道 C 的维度。BN对较小的batch size效果不好。BN适用于固定深度的前向神经网络,如CNN,不适用于RNN;
  2. LN在通道方向上,对C、H、W归一化,主要对RNN效果明显;
  3. IN在图像像素上,对H、W做归一化,用在风格化迁移;
  4. GN将channel分组,然后再做归一化。

            

 每个子图表示一个特征图,其中N为批量,C为通道,(H,W)为特征图的高度和宽度。 通过蓝色部分的值来计算均值和方差,从而进行归一化,即为蓝色像素代表相同的均值和方差归一化。

如果把特征图x \in \mathbb{R}^{N \times C \times H \times W}比喻成一摞书,这摞书总共有 N 本,每本有 C 页,每页有 H 行,每行 有W 个字符。

1. BN 求均值时,相当于把这些书按页码一一对应地加起来(例如第1本书第36页,第2本书第36页......),再除以每个页码下的字符总数:N×H×W,因此可以把 BN 看成求“平均书”的操作(注意这个“平均书”每页只有一个字),求标准差时也是同理。

2. LN 求均值时,相当于把每一本书的所有字加起来,再除以这本书的字符总数:C×H×W,即求整本书的“平均字”,求标准差时也是同理。

3. IN 求均值时,相当于把一页书中所有字加起来,再除以该页的总字数:H×W,即求每页书的“平均字”,求标准差时也是同理。

4. GN 相当于把一本 C 页的书平均分成 G 份,每份成为有 C/G 页的小册子,求每个小册子的“平均字”和字的“标准差”。

 

 一、 Batch Normalization, BN 

(1)在深度神经网络训练的过程中,通常以输入网络的每一个mini-batch进行训练,这样每个batch具有不同的分布,使模型训练起来特别困难。

(2)Internal Covariate Shift (ICS) 问题:在训练的过程中,激活函数会改变各层数据的分布,随着网络的加深,这种改变(差异)会越来越大,使模型训练起来特别困难,收敛速度很慢,会出现梯度消失的问题。

BN的主要思想:针对每个神经元,使数据在进入激活函数之前,沿着通道计算每个batch的均值、方差,‘强迫’数据保持均值为0,方差为1的正态分布,避免发生梯度消失。具体来说,就是把第1个样本的第1个通道,加上第2个样本第1个通道 ...... 加上第 N 个样本第1个通道,求平均,得到通道 1 的均值(注意是除以 N×H×W 而不是单纯除以 N,最后得到的是一个代表这个 batch 第1个通道平均值的数字,而不是一个 H×W 的矩阵)。求通道 1 的方差也是同理。对所有通道都施加一遍这个操作,就得到了所有通道的均值和方差。

BN的使用位置:全连接层或卷积操作之后,激活函数之前。

BN算法过程:

  • 沿着通道计算每个batch的均值\mu
  • 沿着通道计算每个batch的方差\sigma ^2
  • 做归一化
  • 加入缩放和平移变量和\gamma\beta

                                                                                  \begin{aligned} \mu &=\frac{1}{m} \sum_{i=1}^{m} z^{(i)} \\ \sigma^{2} &=\frac{1}{m} \sum_{i=1}^{m}\left(z^{(i)}-\mu\right)^{2} \\ z_{\text {Norm }}^{(i)} &=\frac{z^{(t)}-\mu}{\sqrt{\sigma^{2}+\varepsilon}} \\ \tilde{z}^{(i)} &=\gamma_{\text {Norn }}^{(i)}+\beta \end{aligned}

其中 \varepsilon是一个很小的正值,比如 10^{-8}加入缩放和平移变量的原因是:保证每一次数据经过归一化后还保留原有学习来的特征,同时又能完成归一化操作,加速训练。 这两个参数是用来学习的参数。

BN的作用:

(1)允许较大的学习率;

(2)减弱对初始化的强依赖性

(3)保持隐藏层中数值的均值、方差不变,让数值更稳定,为后面网络提供坚实的基础;

(4)有轻微的正则化作用(相当于给隐藏层加入噪声,类似Dropout)

BN存在的问题:

(1)每次是在一个batch上计算均值、方差,如果batch size太小,则计算的均值、方差不足以代表整个数据分布。

(2)batch size太大:会超过内存容量;需要跑更多的epoch,导致总训练时间变长;会直接固定梯度下降的方向,导致很难更新。

二、 Layer Normalization, LN

针对BN不适用于深度不固定的网络(sequence长度不一致,如RNN),LN对深度网络的某一层的所有神经元的输入按以下公式进行normalization操作。

                                                               \mu^{l}=\frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \quad \sigma^{l}=\sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(a_{i}^{l}-\mu^{l}\right)^{2}}

 

LN中同层神经元的输入拥有相同的均值和方差,不同的输入样本有不同的均值和方差。

对于特征图x \in \mathbb{R}^{N \times C \times H \times W},LN 对每个样本的 C、H、W 维度上的数据求均值和标准差,保留 N 维度。其均值和标准差公式为:

                                                                     \mu_{n}(x)=\frac{1}{C H W} \sum_{c=1}^{C} \sum_{h=1}^{H} \sum_{w=1}^{W} x_{n c h w}

                                                   \sigma_{n}(x)=\sqrt{\frac{1}{C H W} \sum_{c=1}^{C} \sum_{h=1}^{H} \sum_{w=1}^{W}\left(x_{n c h w}-\mu_{n}(x)\right)^{2}+\epsilon}

Layer Normalization (LN) 的一个优势是不需要批训练,在单条数据内部就能归一化。LN不依赖于batch size和输入sequence的长度,因此可以用于batch size为1和RNN中。LN用于RNN效果比较明显,但是在CNN上,效果不如BN。

三、 Instance Normalization, IN

IN针对图像像素做normalization,最初用于图像的风格化迁移。在图像风格化中,生成结果主要依赖于某个图像实例,feature map 的各个 channel 的均值和方差会影响到最终生成图像的风格。所以对整个batch归一化不适合图像风格化中,因而对H、W做归一化。可以加速模型收敛,并且保持每个图像实例之间的独立。

对于x \in \mathbb{R}^{N \times C \times H \times W},IN 对每个样本的 H、W 维度的数据求均值和标准差,保留 N 、C 维度,也就是说,它只在 channel 内部求均值和标准差,其公式如下:

                  

最终对于每一个样本,得到C个均值和方差,一共batch_size个样本。

四、 Group Normalization, GN

GN是为了解决BN对较小的mini-batch size效果差的问题。GN适用于占用显存比较大的任务,例如图像分割。对这类任务,可能 batch size 只能是个位数,再大显存就不够用了。而当 batch size 是个位数时,BN 的表现很差,因为没办法通过几个样本的数据量,来近似总体的均值和标准差。GN 也是独立于 batch 的,它是 LN 和 IN 的折中。

GN的主要思想:在 channel 方向 group,然后每个 group 内做 Norm,计算(C / G) * H * W的均值和方差,这样就与batch size无关,不受其约束。

具体方法:GN 计算均值和标准差时,把每一个样本 feature map 的 channel 分成 G 组,每组将有 C/G 个 channel,然后将这些 channel 中的元素求均值和标准差。各组 channel 用其对应的归一化参数独立地归一化。

                                                         \mu_{n g}(x)=\frac{1}{(C / G) H W} \sum_{c=g C / G}^{(g+1) C / G} \sum_{h=1}^{H} \sum_{w=1}^{W} x_{n c h w}

                                      \sigma_{n g}(x)=\sqrt{\frac{1}{(C / G) H W} \sum_{c=g C / G}^{(g+1) C / G} \sum_{h=1}^{H} \sum_{w=1}^{W}\left(x_{n c h w}-\mu_{n g}(x)\right)^{2}+\epsilon} 

代码如下:

def GroupNorm(x, gamma, beta, G=16):

    # x_shape:[N, C, H, W]
    results = 0.
    eps = 1e-5
    x = np.reshape(x, (x.shape[0], G, x.shape[1]/16, x.shape[2], x.shape[3]))

    x_mean = np.mean(x, axis=(2, 3, 4), keepdims=True)
    x_var = np.var(x, axis=(2, 3, 4), keepdims=True0)
    x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
    results = gamma * x_normalized + beta
    return results

如果我们将组号设置为G = 1,则GN变为LN 。LN假设层中的所有通道都做出“类似的贡献”。GN比LN受限制更少,因为假设每组通道(而不是所有通道)都受共享均值和方差的影响; 该模型仍然具有为每个群体学习不同分布的灵活性。这导致GN相对于LN的代表能力提高。

如果我们将组号设置为G = C(即每组一个通道),则GN变为IN。 但是IN只能依靠空间维度来计算均值和方差,并且错过了利用信道依赖的机会

总结

需要注意它们的映射参和\beta的区别:对于 BN,IN,GN, 其\gamma\beta都是维度等于通道数 C 的向量(因为其均值和方差都是矩阵)。而对于 LN,其\gamma\beta都是维度等于 normalized_shape 的矩阵(因为其均值和方差都是向量)

最后,BN 和 IN 可以设置参数:momentumtrack_running_stats来获得在整体数据上更准确的均值和标准差LN 和 GN 只能计算当前 batch 内数据的真实均值和标准差。

  • BatchNorm:batch方向做归一化,计算N*H*W的均值
  • LayerNorm:channel方向做归一化,计算C*H*W的均值
  • InstanceNorm:一个channel内做归一化,计算H*W的均值
  • GroupNorm:先将channel方向分group,然后每个group内做归一化,计算(C//G)*H*W的均值
  • GN与LN和IN有关,这两种标准化方法在训练循环(RNN / LSTM)或生成(GAN)模型方面特别成功。

、 补充

BN全名是Batch Normalization,见名知意,其是一种归一化方式,而且是以batch的维度做归一化,那么问题就来了,此归一化方式对batch是independent的,过小的batch size会导致其性能下降,一般来说每GPU上batch设为32最合适,但是对于一些其他深度学习任务batch size往往只有1-2,比如目标检测,图像分割,视频分类上,输入的图像数据很大,较大的batchsize显存吃不消。那么,对于较小的batch size,其performance是什么样的呢?如下图:

                        

横轴表示每个GPU上的batch size大小,从左到右一次递减,纵轴是误差率,可见,在batch较小的时候,GN较BN有少于10%的误差率。

另外,Batch Normalization是在batch这个维度上Normalization,但是这个维度并不是固定不变的,比如训练和测试时一般不一样,一般都是训练的时候在训练集上通过滑动平均预先计算好平均-mean,和方差-variance参数,在测试的时候,不在计算这些值,而是直接调用这些预计算好的来用,但是,当训练数据和测试数据分布有差别是时,训练机上预计算好的数据并不能代表测试数据,这就导致在训练,验证,测试这三个阶段存在inconsistency。

既然明确了问题,解决起来就简单了,归一化的时候避开batch这个维度是不是可行呢,于是就出现了layer normalization和instance normalization等工作,但是仍比不上本篇介绍的工作GN。

  • BN在batch的维度上norm,归一化维度为[N,H,W],对batch中对应的channel归一化;
  • LN避开了batch维度,归一化的维度为[C,H,W];
  • IN 归一化的维度为[H,W];
  • 而GN介于LN和IN之间,其首先将channel分为许多组(group),对每一组做归一化,及先将feature的维度由[N, C, H, W]reshape为[N, G,C//G , H, W],归一化的维度为[C//G , H, W]

事实上,GN的极端情况就是LN和I N,分别对应G等于C和G等于1,作者在论文中给出G设为32较好。

那么GN为什么可以work呢?

传统角度来讲,在深度学习没有火起来之前,提取特征通常是使用SIFT,HOG和GIST特征,这些特征有一个共性,都具有按group表示的特性,每一个group由相同种类直方图的构建而成,这些特征通常是对在每个直方图(histogram)或每个方向(orientation)上进行组归一化(group-wise norm)而得到。而更高维的特征比如VLAD和Fisher Vectors(FV)也可以看作是group-wise feature,此处的group可以被认为是每个聚类(cluster)下的子向量sub-vector。

从深度学习上来讲,完全可以认为卷积提取的特征是一种非结构化的特征或者向量,拿网络的第一层卷积为例,卷积层中的的卷积核filter1和此卷积核的其他经过transform过的版本filter2(transform可以是horizontal flipping等),在同一张图像上学习到的特征应该是具有相同的分布,那么,具有相同的特征可以被分到同一个group中,按照个人理解,每一层有很多的卷积核,这些核学习到的特征并不完全是独立的,某些特征具有相同的分布,因此可以被group。

导致分组(group)的因素有很多,比如频率、形状、亮度和纹理等,HOG特征根据orientation分组,而对神经网络来讲,其提取特征的机制更加复杂,也更加难以描述,变得不那么直观。另在神经科学领域,一种被广泛接受的计算模型是对cell的响应做归一化,此现象存在于浅层视觉皮层和整个视觉系统。

作者基于此,提出了组归一化(Group Normalization)的方式,且效果表明,显著优于BN、LN、IN等。

GN的归一化方式避开了batch size对模型的影响,特征的group归一化同样可以解决$Internal$ $Covariate$ $Shift$的问题,并取得较好的效果。

GN具体的效果如下:

                    

以resnet50为base model,batchsize设置为32在imagenet数据集上的训练误差(左)和测试误差(右)

GN没有表现出很大的优势,在测试误差上稍大于使用BN的结果。

                      

 可以很容易的看出,GN对batch size的鲁棒性更强

同时,作者以VGG16为例,分析了某一层卷积后的特征分布学习情况,分别根据不使用Norm 和使用BN,GN做了实验,实验结果如下:

                        

统一batch size设置的是32,最左图是不使用norm的conv5的特征学习情况,中间是使用了BN结果,最右是使用了GN的学习情况,相比较不使用norm,使用norm的学习效果显著,而后两者学习情况相似,不过更改小的batch size后,BN是比不上GN的。

 

 

 

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值