跨卡同步 Batch Normalization

一.为什么要跨卡同步 Batch Normalization

现有的标准 Batch Normalization 因为使用数据并行(Data Parallel),是单卡的实现模式,只对单个卡上对样本进行归一化,相当于减小了批量大小(batch-size)。 对于比较消耗显存的训练任务时,往往单卡上的相对批量过小,影响模型的收敛效果。 之前在在图像语义分割的实验中,就发现使用大模型的效果反而变差,实际上就是BN在作怪。 跨卡同步 Batch Normalization 可以使用全局的样本进行归一化,这样相当于‘增大‘了批量大小,这样训练效果不再受到使用 GPU 数量的影响。 最近在图像分割、物体检测的论文中,使用跨卡BN也会显著地提高实验效果,所以跨卡 BN 已然成为竞赛刷分、发论文的必备神器。

二. Batch Normalization

内部协转移(Internal Covariate Shift):由于训练时网络参数的改变导致的网络层输出结果分布的不同。这正是导致网络训练困难的原因。

因此提出了两种简化方式来加速收敛速度: 1)对特征的每个维度进行标准化,忽略白化中的去除相关性; 2)在每个mini-batch中计算均值和方差来替代整体训练集的计算。

BN前向过程如下:

                        

BN反向过程如下: 

                

BN 有效地加速了模型训练,加大 learning rate,让模型不再过度依赖初始化。它在训练时在网络内部进行归一化(normalization), 为训练提供了有效的 regularization,抑制过拟合,用原作者的话是防止了协方差偏移。这里上一张图来展示训练模式的BN:

                                                             

其中输入样本,其均值为,方差为, BN的输出,是可学习对参数。 个人认为,这种强大的效果其实来自于back-propagation时候,来自于均值和方差对输入样本的梯度( )。 这也是BN在训练模式与其在测试模式的重要区别,在测试模式(evaluation mode)下, 使用训练集上累积的均值和方差,在back-propagation的时候他们对输入样本没有梯度(gradient)。 

在训练时计算mini-batch的均值和标准差并进行反向传播训练,而测试时并没有batch的概念,训练完毕后需要提供固定的

                                                                                         

供测试时使用。论文中对所有的mini-batch的

                                                                                          2019-08-17-9

取了均值:

                                                                         

测试阶段,同样要进行归一化和缩放平移操作,唯一不同之处是不计算均值和方差,而使用训练阶段记录下来的 

                                                                                            

                                                    

Batch Norm优点:

  • 减轻过拟合
  • 改善梯度传播(权重不会过高或过低)
  • 容许较高的学习率,能够提高训练速度。
  • 减轻对初始化权重的强依赖,使得数据分布在激活函数的非饱和区域,一定程度上解决梯度消失问题。
  • 作为一种正则化的方式,在某种程度上减少对dropout的使用。

 三.BN训练与测试过程

BN层有4个参数,gamma、beta、moving mean、moving variance。其中gamma、beta为学习参数,moving mean、moving variance为数据集统计均值与方差,不可学习。在训练过程中:

      

y为BN层输出,此时归一化的均值与方差为当前mini-batch的均值与方差。同时也记录moving mean、moving variance的值,每训练一个batch,moving mean、moving variance就更新一次。注意此参数更新过程不是学习过程,而是纯粹的计算train-set在当前BN数据分布过程,因此不能将算作是学习过程。decay为一个接近于1的值,比如0.9997。

在测试过程中:

                                    

四.数据并行

深度学习平台在多卡(GPU)运算的时候都是采用的数据并行(DataParallel),如下图:

                                                 

每次迭代,输入被等分成多份,然后分别在不同的卡上前向(forward)和后向(backward)运算,并且求出梯度,在迭代完成后合并梯度、更新参数,再进行下一次迭代。因为在前向和后向运算的时候,每个卡上的模型是单独运算的,所以相应的Batch Normalization 也是在卡内完成,所以实际BN所归一化的样本数量仅仅局限于卡内,相当于批量大小(batch-size)减小了。

五.跨卡同步(Cross-GPU Synchronized)或 同步BN(SyncBN)

 跨卡同步BN的关键是在前向运算的时候拿到全局的均值和方差,在后向运算时候得到相应的全局梯度。 最简单的实现方法是先同步求均值,再发回各卡然后同步求方差,但是这样就同步了两次。实际上只需要同步一次就可以,因为总体batch_size对应的均值和方差可以通过每张GPU中计算得到的

                                                                                 

得到. 在反向传播时也一样需要同步一次梯度信息, 祥见论文Context Encoding for Semantic Segmentation :

                                                           

这样在前向运算的时候,我们只需要在各卡上算出x_ix_i^2,再跨卡求出全局的和即可得到正确的均值和方差, 同理我们在后向运算的时候只需同步一次,求出相应的梯度与。 

有了跨卡BN我们就不用担心模型过大用多卡影响收敛效果了,因为不管用多少张卡只要全局的批量大小一样,都会得到相同的效果。

六.总结

1.sync资源

  1. jianlong-yuan/syncbn-tensorflow重写了TensorFlow的官方方法,可以做个实验验证一下。
  2. 旷视科技:CVPR 2018 旷视科技物体检测冠军论文——大型Mini-Batch检测器MegDet
  3. tensorpack/tensorpack里面有该论文的代码实现。

2.some problems

为什么不用全局mean和var,能不能先把整个数据集的mean和var计算出来,在训练的时候设置好mean和var并且不更新(use_global_states = True)?

不可以。因为训练过程中每一层的值都是在随着权重参数的变换在动态变化的,这个时候每一层的mean 和var就会不断变化 如果用global states的话就等价于对于原数据做了一个固定值偏移   相当于没有batchnorm 

3.2 为什么不进行多卡同步?

现有框架BatchNorm的实现都是只考虑了single gpu。也就是说BN使用的均值和标准差是单个gpu算的,相当于缩小了mini-batch size。至于为什么这样实现,1)因为没有sync的需求,因为对于大多数vision问题,单gpu上的mini-batch已经够大了,完全不会影响结果。2)影响训练速度,BN layer通常是在网络结构里面广泛使用的,这样每次都同步一下GPUs,十分影响训练速度。

 

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值