Softmax回归

一.概述

softmax其实是Logistic的推广到多类别分类应用中。softmax分类器的思想很简单,对于一个新的样本,softmax回归模型对于每一类都先计算出一个分数,然后通过softmax函数得出一个概率值,根据最终的概率值来确定属于哪一类。

首先,我们看一下sigmod激活函数,如下图,它经常用于逻辑回归,将一个real value映射到(0,1)的区间(当然也可以是(-1,1),这样可以用来做二分类。

softmax函数:

 

二.实现

 softmax把一个k维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….)

其中bi是一个0-1的常数,然后可以根据bi的大小来进行多分类的任务,如取概率最大的一维。

具体实现如下图:

无非是把神经网络最后一层的激活函数替换为softmax函数,算出概率值最大的那一类即正确类

 

 

其代价函数为L(\hat y,y ) = - \sum_{j = 1}^{n}{y_{j}log\hat y_{j}}

实例如下图所示,当代价函数最小时,那一个正确分类的概率输出值最大。

对于多分类问题,最后一层为softmax层。对于softmax层,在实现反向传播时,dz^{[l]} =\frac{\partial J}{\partial z^{[l]}}= \hat{y} -y,由此就可以计算神经网络中的所有导数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值