CTR预估中GBDT与LR融合方案

1、背景

CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入。

CTR预估中用的最多的模型是LR(Logistic Regression),LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间,映射后的函数值就是CTR的预估值。LR这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的特征、特征组合,从而去间接增强LR的非线性学习能力。LR模型中的特征组合很关键, 但又无法直接通过特征笛卡尔积解决,只能依靠人工经验,耗时耗力同时并不一定会带来效果提升。如何自动发现有效的特征、特征组合,弥补人工经验不足,缩短LR特征实验周期,是亟需解决的问题。

Facebook 2014年的文章介绍了通过GBDT(Gradient Boost Decision Tree)解决LR的特征组合问题,随后Kaggle竞赛也有实践此思路,GBDT与LR融合开始引起了业界关注。

GBDT(Gradient Boost Decision Tree)是一种常用的非线性模型,它基于集成学习中的boosting思想,每次迭代都在减少残差的梯度方向新建立一颗决策树,迭代多少次就会生成多少颗决策树。GBDT的思想使其具有天然优势可以发现多种有区分性的特征以及特征组合,决策树的路径可以直接作为LR输入特征使用,省去了人工寻找特征、特征组合的步骤。

下图为使用GBDT+LR前后的特征实验示意图,融合前人工寻找有区分性特征(raw feature)、特征组合(cross feature),融合后直接通过黑盒子(Tree模型GBDT)进行特征、特种组合的自动发现。
在这里插入图片描述

2、 GBDT与LR融合现状

在这里插入图片描述
GBDT与LR的融合方式,Facebook的paper有个例子如上图所示,图中Tree1、Tree2为通过GBDT模型学出来的两颗树,x为一条输入样本,遍历两棵树后,x样本分别落到两颗树的叶子节点上,每个叶子节点对应LR一维特征,那么通过遍历树,就得到了该样本对应的所有LR特征。由于树的每条路径,是通过最小化均方差等方法最终分割出来的有区分性路径,根据该路径得到的特征、特征组合都相对有区分性,效果理论上不会亚于人工经验的处理方式。

GBDT模型的特点,非常适合用来挖掘有效的特征、特征组合。业界不仅GBDT+LR融合有实践,GBDT+FM也有实践,2014 Kaggle CTR竞赛冠军就是使用GBDT+FM,可见,使用GBDT融合其它模型是非常值得尝试的思路。

按照Facebook、Kaggle竞赛的思路,不加入广告侧的ADID特征?但是现CTR预估中,AD ID类特征是很重要的特征,故建树时需要考虑AD ID。直接将AD ID加入到建树的feature中?但是AD ID过多,直接将AD ID作为feature进行建树不可行。下面第三部分将介绍针对现有CTR预估场景GBDT+LR的融合方案。

3、GBDT与LR融合方案

在这里插入图片描述
AD ID类特征在CTR预估中是非常重要的特征,直接将AD ID作为feature进行建树不可行,顾考虑为每个AD ID建GBDT树。但互联网时代长尾数据现象非常显著,广告也存在长尾现象,为了提升广告整体投放效果,不得不考虑长尾广告。在GBDT建树方案中,对于曝光充分训练样本充足的广告,可以单独建树,发掘对单个广告有区分度的特征,但对于曝光不充分样本不充足的长尾广告,无法单独建树,需要一种方案来解决长尾广告的问题。

综合考虑方案如下,使用GBDT建两类树,非ID建一类树,ID建一类树。
1)非ID类树:不以细粒度的ID建树,此类树作为base,即便曝光少的广告、广告主,仍可以通过此类树得到有区分性的特征、特征组合。
2)ID类树:以细粒度的ID建一类树,用于发现曝光充分的ID对应有区分性的特征、特征组合。

如何根据GBDT建的两类树,对原始特征进行映射?以上图为例,当一条样本x进来之后,遍历两类树到叶子节点,得到的特征作为LR的输入。当AD曝光不充分不足以训练树时,其它树恰好作为补充。

通过GBDT 映射得到的特征空间维度如何?GBDT树有多少个叶子节点,通过GBDT得到的特征空间就有多大。如下图一颗树,一个叶子节点对应一种有区分性的特征、特征组合,对应LR的一维特征。这颗树有8个叶子节点,即对应LR 的8维特征。估算一下,通过GBDT转换得到的特征空间较低,Base树、ID树各N颗,特征空间维度最高为(N+N广告数+N广告主数+ N*广告类目数)*叶子节点个数。其中广告数、广告主数、广告类目数都是有限的,同时参考Kaggle竞赛中树的数目N最多为30,叶子节点个数小于10,则估算通过GBDT 映射得到的特征空间维度并不高,且并不是每个ID训练样本都足以训练多颗树,实际上通过GBDT 映射得到的特征空间维度更低。
在这里插入图片描述
如何使用GBDT 映射得到的特征?通过GBDT生成的特征,可直接作为LR的特征使用,省去人工处理分析特征的环节,LR的输入特征完全依赖于通过GBDT得到的特征。此思路已尝试,通过实验发现GBDT+LR在曝光充分的广告上确实有效果,但整体效果需要权衡优化各类树的使用。

参考文献

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值