EGE-UNet: An Efficient Group Enhanced UNet for Skin Lesion Segmentation
MICCAI 2023
https://github.com/JCruan519/EGE-UNet
EGE-UNet: an Efficient Group Enhanced UNet for skin lesion segmentation(EGE-UNet:一种有效的组增强UNet皮肤病变分割方法)
摘要
Transformer
及其变体在医学图像分割中有着广泛的应用。然而,这些模型的大量参数和计算量使其不适合移动医疗应用。为了解决这个问题,我们提出了一种更有效的方法,即高效组增强UNet (EGE-UNet)。我们以轻量级的方式集成了一个组多轴Hadamard产品关注模块(GHPA)和一个组聚合桥模块(GAB)。GHPA对输入特征进行分组,并在不同轴上执行Hadamard产品注意机制(HPA),从不同角度提取病理信息。GAB通过分组低阶特征、高阶特征和解码器在每个阶段生成的掩码,有效地融合了多尺度信息。在ISIC2017和ISIC2018数据集上的综合实验表明,EGEUNet优于现有的最先进的方法。简而言之,与TransFuse相比,我们的模型实现了卓越的分割性能,同时将参数和计算成本分别降低了494倍和160倍。此外,据我们所知,这是第一个参数计数限制为50KB的模型。
我们的贡献有三个方面:
-
(1)提出了GHPA和GAB,前者有效地获取和整合多视角信息,后者接受不同尺度的特征,并提供了一个辅助掩模进行有效的多尺度特征融合。
-
(2)我们提出了EGEUNet,一个非常轻量级的模型,用于皮肤病变分割。
-
(3)我们进行了大量的实验,这些实验证明了我们的方法在显著降低资源需求的情况下实现最先进性能的有效性。
框架
结论
在本文中,我们提出了两个高级模块。我们的GHPA采用了一种新颖的HPA机制,将自关注的二次复杂度简化为线性复杂度。它还利用分组来从不同的角度完全捕获信息。我们的GAB融合了低级和高级特征,并引入了一个掩模来集成多尺度信息。在此基础上,提出了基于eeg - unet的皮肤病灶分割任务。实验结果证明了我们的方法在显著降低资源需求的情况下实现最先进性能的有效性。我们希望我们的工作能够启发医学界对轻量化模型的进一步研究。对于局限性和未来的工作,一方面,我们主要关注如何在提高性能的同时大幅降低参数和计算复杂度。因此,我们计划在未来的工作中在现实环境中部署ge - unet。另一方面,EGE-UNet目前仅用于皮肤病变分割任务。因此,我们将把轻量级设计扩展到其他任务。