关注公众号,发现CV技术之美
YOLO系算法之所以在工业界受到追捧,并不单是因为精度高、速度快,可以很方便的开发和部署一直是一个重要原因。
YOLOv8用PyTorch开发,但其模型可以很方便地转为各种主流深度学习框架的格式,方便用户在不同场景选择更适合和高效的方案。
YOlOv8支持的导出格式:
当你在部署模型时,硬件确定好后,选择哪种推理方式?YOLOv8 benchmark 可以一行命令帮你选择。
最近CV君在一个项目中,需要在VPS虚拟机(3核心4.5G内存,位于国外)运行YOLOv8的检测模型,在虚拟机上用这一行命令就找到最佳的推理方式:
yolo benchmark model=yolov8n.pt imgsz=640 half=False device=cpu
half=False 代表不使用半精度推理,其他参数都很好理解。这行命令会自动将我们的模型转化为YOLOv8支持的各种可导出模型,即使你的机器没有安装相关软件,它也会自动帮你安装,相当nice!
最终运行结果:
可见在我的VPS上ONNX推断效率更高,X号代表硬件不支持和软件安装不成功的情况。
如果要在有 NVIDIA GPU 的机器上进行模型推理,可以这样benchmark:
yolo benchmark model=yolov8n.pt imgsz=640 half=False device=0
这代表在设备号为0的GPU上跑benchmark。
不过运行这行命令的时候,最好网络环境“比较好”,因为上述命令会自动安装缺少的软件,我这边试了几次下载都很慢,甚至中断。
当然这个工具也不仅仅可以测评YOLOv8训练的模型,也可以将其他模型转成YOLOv8支持的格式来测评。
END,入群👇备注:YOLO