YOLOv8 benchmark:一行命令测试你的模型怎么跑更快

YOLOv8因其高精度、快速度在工业界广泛应用,支持多种框架转换。通过YOLOv8benchmark工具,用户可以在不同硬件环境下找到最佳推理方式。在3核心4.5G内存的VPS上,ONNX推理表现出更高效率。对于有GPU的设备,可在设备号指定的GPU上运行benchmark,但需注意网络环境对自动安装软件的影响。
摘要由CSDN通过智能技术生成

关注公众号,发现CV技术之美

YOLO系算法之所以在工业界受到追捧,并不单是因为精度高、速度快,可以很方便的开发和部署一直是一个重要原因。

YOLOv8用PyTorch开发,但其模型可以很方便地转为各种主流深度学习框架的格式,方便用户在不同场景选择更适合和高效的方案。

YOlOv8支持的导出格式:

528ff62cdb370ee696694a48bae89a68.png

当你在部署模型时,硬件确定好后,选择哪种推理方式?YOLOv8 benchmark 可以一行命令帮你选择。

最近CV君在一个项目中,需要在VPS虚拟机(3核心4.5G内存,位于国外)运行YOLOv8的检测模型,在虚拟机上用这一行命令就找到最佳的推理方式:

yolo benchmark model=yolov8n.pt imgsz=640 half=False device=cpu

half=False 代表不使用半精度推理,其他参数都很好理解。这行命令会自动将我们的模型转化为YOLOv8支持的各种可导出模型,即使你的机器没有安装相关软件,它也会自动帮你安装,相当nice!

9db7c81ee77796fb59f3119097f11fbf.png

最终运行结果:

1b2576619c763d327e8290f7cf32c710.png

可见在我的VPS上ONNX推断效率更高,X号代表硬件不支持和软件安装不成功的情况。

如果要在有 NVIDIA GPU 的机器上进行模型推理,可以这样benchmark:

yolo benchmark model=yolov8n.pt imgsz=640 half=False device=0

这代表在设备号为0的GPU上跑benchmark。

不过运行这行命令的时候,最好网络环境“比较好”,因为上述命令会自动安装缺少的软件,我这边试了几次下载都很慢,甚至中断。

当然这个工具也不仅仅可以测评YOLOv8训练的模型,也可以将其他模型转成YOLOv8支持的格式来测评。

END,入群👇备注:YOLO

8b71a21ceadf9aacad243c5d5e9b5a0f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值