多维自动化分析

该博客介绍了如何使用Python进行自动化多维数据分析,包括设置分析日期、读取数据源、选择分析维度、进行多步分析(如维度汇总、同比匹配、变异系数计算等),并最终生成分析报告(Word文档)。示例中展示了对GMV指标的多维自动化分析过程,旨在提高业务问题定位效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景:

所有业务都会面对“为什么涨、为什么降、原因是什么?”这种简单粗暴又不易定位的业务问题。为了找出数据发生异动的原因,业务人员会通过使用多维查询、dashboard等数据产品锁定问题,再辅助人工分析查找问题原因,这个过程通常需要花费很长时间。因此需要一款自动给出分析结论的自动化数据工具来解决上面的问题。

本次自动化数据工具将使用Python来实现自动化多维分析与分析报告(Word)输出

多维自动化分析开发步骤:

1、设置分析日期
2、读取分析数据源
3、选定要分析的维度
4、循环自动化多维分析

4.1 维度汇总
4.2 日期+维度笛卡尔积
4.3 同比匹配
4.4 变异系数
4.5 同比维度影响系数计算
4.6 同比Top3维度影响分析

5、输出分析结论

5.1 整体概况
5.2 异常波动影响贡献度Top3

6、保存生成word文档

示例:

GMV指标多维自动化分析
在这里插入图片描述


```python
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-

import pandas as pd
from docx import Document

# 定义数据表格插入Doc文档函数

def df_toword(df):
    t = document.add_table(df.shape[0]+1, df.shape[1])
    for j in range(df.shape[-1]):
        t.cell(0, j).text = df.columns[j]

    for i in range(df.shape[0]):
        for j in range(df.shape[-1]):
            t.cell(i + 1, j).text = str(df.values[i, j])

# 新建一个文档
document = Document()
document.add_heading(u' 多维自动化分析报告 ', 0)

# 设置分析日期

analyse_date = pd.DataFrame({'stat_date':pd.date_range(start='20220221',end='20220227',freq='1D')})
analyse_date['stat_date_tongbi'] = pd.to_datetime(analyse_date['stat_date']) - pd.DateOffset(weeks=1)
analyse_date['key'] = 1

# 分析数据源
df = pd.read_csv(r'C:\Users\86188\Desktop\gmv_test.csv',engine='python',index_col=False)
df.stat_date = pd.to_datetime(df.stat_date)

# 选定要分析的维度
analyse_dim_group = ['platform','catgory']

## 自动化多维分析

for dim in analyse_dim_group:
    print("分析维度:"+dim)
    document.add_paragraph("分析维度:"+dim)
    # 维度汇总
    df_dim_group = df.groupby(['stat_date',dim],as_index=False).agg({'GMV': 'sum'}).round(2)

    # 日期+维度笛卡尔积
    analyse_dim = pd.DataFrame({dim:list(set(df[dim]))})
    analyse_dim['key'] = 1
    analyse_dim_merge = analyse_date.merge(analyse_dim,on='key')


    # 同比匹配
    analyse_data_merge = pd.merge(analyse_dim_merge,df_dim_group,on=['stat_date',dim],how='left')
    df_dim_group.rename(columns={'stat_date':'stat_date_tongbi','GMV':'GMV_tongbi'},inplace=True)
    analyse_data_merge = pd.merge(analyse_data_merge,df_dim_group,on=['stat_date_tongbi',dim],how='left')
    analyse_data_merge = analyse_data_merge.fillna(0)

    # 同比维度系数计算

    analyse_data_merge = analyse_data_merge.groupby([dim],as_index=False).agg({'GMV': 'sum','GMV_tongbi': 'sum'}).round(2)

    analyse_data_merge['GMV_diff'] = analyse_data_merge['GMV']-analyse_data_merge['GMV_tongbi']
    analyse_data_merge['GMV_rate'] = ((analyse_data_merge['GMV']-analyse_data_merge['GMV_tongbi'])/analyse_data_merge['GMV_tongbi']).apply(lambda x: format(x, '.2%'))
    total_gmv=analyse_data_merge['GMV'].sum()-analyse_data_merge['GMV_tongbi'].sum()
    total_gmv_rate=(analyse_data_merge['GMV'].sum()-analyse_data_merge['GMV_tongbi'].sum())/analyse_data_merge['GMV_tongbi'].sum()
    analyse_data_merge['GMV_per_rate']=analyse_data_merge['GMV_diff']/total_gmv

    # analyse_data_merge.to_csv(r'C:\Users\86188\Desktop\analyse_result.csv',index=0,mode='a')

    # 同比Top3维度影响分析

    analyse_result=analyse_data_merge.sort_values(by='GMV_per_rate', ascending=False).head(5).round(2)
    print(analyse_result)
    document.add_paragraph("维度汇总明细:")
    df_toword(analyse_result)

    # 变异系数
    CV = abs(analyse_result.describe()['GMV_diff']['std'] / analyse_result.describe()['GMV_diff']['mean'])
    print(CV)
    document.add_paragraph("变异系数:"+str(CV))

    Top3_d1=list((analyse_result.iloc[0:3])[dim])
    Top3_v1=list((analyse_result.iloc[0:3])['GMV_per_rate'])


    #整体概况
    total_analyse= "整体概况:总体下降 " + str(int(total_gmv)) + "同比下降" + format(total_gmv_rate, '.2%')
    print(total_analyse)
    document.add_paragraph(total_analyse)
    # 异常波动影响贡献度Top3

    dim_analyse="异常波动影响贡献度Top3:" + Top3_d1[0] + "/" + Top3_d1[1] + "/" + Top3_d1[2]+";影响系数:" + format(Top3_v1[0], '0') + "/" + format(Top3_v1[1], '0') + "/" + format(Top3_v1[2], '0')

    print(dim_analyse)
    document.add_paragraph(dim_analyse)

# 保存生成word文档
document.save(r'C:\Users\86188\Desktop\多维自动化分析报告.docx')

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值