坐标变换
目录
通过三相二相坐标变化,把三相交流量简化为二个直流量,从二个直流量出发可以控制三相交流量的各个属性。旋转坐标系,相对于静止坐标系,它会以三相交流频率转动。
ABC-ab变换
ABC->ab变换
方式一几何关系
IsA = ia;
IsB =-(ia*cos60 –ib*sin60) = -1/2*ia + sqrt(3)/2*ib;
IsC = -(ia*cos60 +ib*sin60)= -1/2*ia - sqrt(3)/2*ib;
方式二代数方程
IsA = Icos(wt);
IsB = Icos(wt-120);
IsC = Icos(wt+120);
ia = Icos(wt);
ib = Isin(wt);
三角函数展开
IsA = ia;
IsB = -1/2*ia +sqrt(3)/2*ib;
IsC = -1/2*ia -sqrt(3)/2*ib;
ab->ABC变换
方式一坐标映射
ia = IsA -cos60*IsC -cos60*IsB =IsA-1/2*IsC - 1/2*IsB
ib = -IsC*sin60 +IsB*sin60= IsB*sqrt(3)/2 - IsC*sqrt(3)/2
方式二代数推导
结合ABC->ab的代数方程以及IsA + IsB + IsC = 0,推导:
ia = IsA -cos60*IsC -cos60*IsB =IsA-1/2*IsC - 1/2*IsB
ib = -IsC*sin60+IsB*sin60 = IsB*sqrt(3)/2 - IsC*sqrt(3)/2
变换系数
ia = IsA-1/2*IsC - 1/2*IsB
ib = IsB*sqrt(3)/2 - IsC*sqrt(3)/2
可得
|ia| = 1.5|I|
|ib| = 1.5|I|
变换前后幅值相等: I =k*|ia| k = 2/3
变换前后功率相等 3UI = k*1.5U*k*1.5I*2 k *k = 2/3 k = sqrt(2/3)
ab-dq变换
ab-dq变换
方式一几何关系
id = ia*cosθ + ib*sinθ
iq = -ia*sinθ + ib*cosθ
方式二代数推倒
三角函数
id = I*cos(φ-θ) = Icosφ*cosθ+I*sinφ*sinθ= ia*cosθ + ib*sinθ
Iq = I*sin(φ-θ) = Isinφ*cosθ-I*cosφ*sinθ = ib*cosθ - ia*sinθ
方式三坐标映射
id = ia*cosθ + ib*sinθ
iq = -ia*sinθ +ib*cosθ
dq-ab变换
方式一几何关系
ia = id*cosθ – iq*sinθ
ib= id*sinθ + iq*cosθ
方式二 代数推导 同ab->dq方法
方式三 坐标映射 同ab->dq方法