三相永磁同步电机之一:坐标变换(自学使用)

        PMSM是一个强耦合、复杂的非线性系统,要实现更好的控制建立合适的数学模型就显得尤为重要,主要包括同步旋转坐标系、静止坐标系下的数学模型,以及动态模型。

三相PMSM的坐标变换

        1.1 Clark变换(3s->2s)

                将自然坐标系ABC变换到两相静止坐标系\alpha -\beta的变换称为Clark变换,变换以产生相等的磁动势以及相等的电压或电流幅值(或相等的电功率)为准则。由产生相等的电压或电流幅值和相等的电功率可分为等幅值变换以及等功率变换

                1.1.1 等幅值变换

                        等幅值变换与等功率变换本质上是对转换得到的两相静止坐标系进行缩放处理。先  写出变换前后的电压(将三相电压表示为u_{a},u_{b},u_{c}表示):

                                                                \left\{\begin{matrix} u_{a} = U_{m}cos(\omega t)\\ u_{b} = U_{m}cos(\omega t - \frac{2}{3}\pi) \\ u_{c} = U_{m}cos(\omega t + \frac{2}{3}\pi) \end{matrix}\right.

                       合成得到的电压矢量为

V = u_{a} + u_{b}e^{j\frac{2}{3}\pi } + u_{c}e^{j\frac{4}{3}\pi } \newline = u_{a} + u_{b}(cos\frac{2\pi }{3} + jsin\frac{2\pi }{3}) + u_{c}(cos\frac{4\pi }{3} + jsin\frac{4\pi }{3}) \newline = u_{a} + u_{b}(-\frac{1}{2} + j\frac{\sqrt{3}}{2}) + u_{c}(-\frac{1}{2} -j\frac{\sqrt{3}}{2}) \newline =(u_{a} - \frac{1}{2}u_{b} - \frac{1}{2}u_{c}) + j(\frac{\sqrt{3}}{2}u_{b} - \frac{\sqrt{3}}{2}u_{c}) \newline =V_{\alpha } + jV_{\beta }

                        变换到两相静止坐标系后:

                        \left\{\begin{matrix} V_{\alpha } = u_{a} - \frac{1}{2}u_{b} - \frac{1}{2}u_{c}=\frac{3}{2}U_{m}cos\omega t\\ V_{\beta } = \frac{\sqrt{3}}{2}u_{b} - \frac{\sqrt{3}}{2}u_{c}=\frac{3}{2}U_{m}cos(\omega t - \frac{\pi }{2} )\end{matrix}\right.

                        示意图如下图所示:

                        写出最终合成电压的幅值为 \frac{3}{2}U_{m},为保证变换后的幅值与三相静止坐标系的幅值 U_{m}相等,则需要再变换时额外乘 \frac{2}{3} 才满足,得到最终的变换式为

\begin{bmatrix} V_{\alpha }^{'}\\ V_{\beta }^{'} \\ V_{0 }^{'} \end{bmatrix} =\frac{2}{3}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} u_{a}\\ u_{b} \\ u_{c} \end{bmatrix}

                        最后一行只有当三相正弦量不对称时才会有值(零序电流),一般对称的情况下不考虑,并且零序电流不产生合成磁场。

                        \alpha\beta轴物理量幅值与原三相电路幅值保持一致,对应转矩公式省去开头的3/2。

                1.1.2 等功率变换

                        先分别计算变换前后的有功功率(与等幅值变换时相同,投影到两相轴时幅值将变为原有的3/2倍):

P_{3p} = 3\cdot \frac{1}{\sqrt{2}}U_{m}\cdot \frac{1}{\sqrt{2}}I_{m}cos\theta =\frac{3}{2}U_{m}I_{m}cos\theta

P_{2p} = 2\cdot \frac{1}{\sqrt{2}}\cdot \frac{3}{2}U_{m}\cdot \frac{1}{\sqrt{2}}\cdot \frac{3}{2}I_{m}cos\theta=\frac{9}{4}U_{m}I_{m}cos\theta

                        将变换后的两相坐标值均乘一个系数k,得到此时的有功功率为:

P_{2p}^{''} = 2\cdot \frac{1}{\sqrt{2}}\cdot k\cdot \frac{3}{2}U_{m}\cdot \frac{1}{\sqrt{2}}\cdot k\cdot \frac{3}{2}I_{m}cos\theta=\frac{9}{4}k^{2}U_{m}I_{m}cos\theta

                        令P_{3p}=P_{2p}^{''} 得:

k=\sqrt{\frac{2}{3}}

                        得到最终的变换公式为

\begin{bmatrix} V_{\alpha }^{''}\\ V_{\beta }^{''} \\ V_{0 }^{''} \end{bmatrix} =\sqrt{\frac{2}{3}}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} u_{a}\\ u_{b} \\ u_{c} \end{bmatrix}

                        最终,两相坐标系物理量的幅值将变为原三相电路幅值的\sqrt{\frac{3}{2}}倍,对应转矩公式要保留开头的3/2。

                 1.1.3 补充

                        上述情况属于d轴起始位置与A轴重合时(对应Matlab中的"Aligned with phase A axis")。当q轴的起始位置与A轴重合时(对应Matlab中的"90 degrees behind phase A axis"),此时的Clark变换有所不同,示意图如下图所示:

                        1.等幅值Clark变换(qa重合)

\begin{bmatrix} V_{\beta }^{'}\\ V_{\alpha }^{'} \\ V_{0 }^{'} \end{bmatrix} =\frac{2}{3}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} u_{a}\\ u_{b} \\ u_{c} \end{bmatrix}

                        2.等功率Clark变换(qa重合)

\begin{bmatrix} V_{\beta }^{''}\\ V_{\alpha }^{''} \\ V_{0 }^{''} \end{bmatrix} =\sqrt{\frac{2}{3}}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} u_{a}\\ u_{b} \\ u_{c} \end{bmatrix}

        1.2 Park变换(2s->2r)

                将静止坐标系\alpha -\beta(图中为d^{r}-q^{r})变换到同步旋转坐标系d-q的坐标变换称为Park变换。由于d-q坐标系是以转子磁场同步旋转的,所以变换矩阵与两坐标系的夹角\theta _{r}有关。其示意图如下图所示:

                Park变换只需要将原有坐标系投影到同步旋转坐标系即可,变换矩阵为:

T_{2s->2r}=\begin{bmatrix} cos\theta _{r} & sin\theta _{r}\\ -sin\theta _{r}& cos\theta _{r} \end{bmatrix}

                要从三相静止坐标系变换至同步旋转坐标系,只需要分别进行上述两次变换即可。

                1.2.1 补充

                        当使用qa重合的Clark变换时,注意进行Clark+Park变换时,需要对T_{2s->2r}进行转置处理(因为qa重合的Clark变换,\alpha ,\beta分量的位置互换了)

T_{2s->2r}^{'}=\begin{bmatrix} cos\theta _{r} & -sin\theta _{r}\\ sin\theta _{r}& cos\theta _{r} \end{bmatrix}

                1.2.2 指数形式的Park变换

                        两相静止坐标系中相量的相位为\theta _\delta,而两相旋转坐标系中相量的相位为\theta _s,两个坐标系间的相位差为\theta _r,得到各坐标系的坐标为:

\left\{\begin{matrix} i_{s}^r=|i_{s}|e^{-j\theta _\delta }\\ i_{s}^s=|i_{s}|e^{-j\theta _s } \\ i_{s}^{r}=i_{s}^{s}e^{-j\theta _r } \end{matrix}\right.

        1.3 Clark+Park变换(3s->2r)

                1.3.1 等幅值da重合

T_{3s->2r}=T_{2s-2r}\cdot T_{3s-2s}=\frac{2}{3}\begin{bmatrix} cos\theta_{r} & cos(\theta_{r} - \frac{2\pi }{3}) & cos(\theta_{r} + \frac{2\pi }{3})\\ -sin\theta_{r} & -sin(\theta_{r}-\frac{2\pi }{3}) & -sin(\theta_{r}+\frac{2\pi }{3})\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}

                1.3.2 等幅值qa重合

T_{3s->2r}=T_{2s-2r}\cdot T_{3s-2s}=\frac{2}{3}\begin{bmatrix} cos\theta_{r} & cos(\theta_{r} - \frac{2\pi }{3}) & cos(\theta_{r} + \frac{2\pi }{3})\\ sin\theta_{r} & sin(\theta_{r}-\frac{2\pi }{3}) & sin(\theta_{r}+\frac{2\pi }{3})\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}

                1.3.3 等功率da重合

T_{3s->2r}=T_{2s-2r}\cdot T_{3s-2s}=\sqrt{\frac{2}{3}}\begin{bmatrix} cos\theta_{r} & cos(\theta_{r} - \frac{2\pi }{3}) & cos(\theta_{r} + \frac{2\pi }{3})\\ -sin\theta_{r} & -sin(\theta_{r}-\frac{2\pi }{3}) & -sin(\theta_{r}+\frac{2\pi }{3})\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}& \frac{\sqrt{2}}{2} \end{bmatrix}

                1.3.4 等功率qa重合

T_{3s->2r}=T_{2s-2r}\cdot T_{3s-2s}=\sqrt{\frac{2}{3}}\begin{bmatrix} cos\theta_{r} & cos(\theta_{r} - \frac{2\pi }{3}) & cos(\theta_{r} + \frac{2\pi }{3})\\ sin\theta_{r} & sin(\theta_{r}-\frac{2\pi }{3}) & sin(\theta_{r}+\frac{2\pi }{3})\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}

        1.4 仿真建模

                1.4.1 等幅值Clark变换

                

                        两个matlab函数中分别为

                1.4.2 Park变换

### 五相永磁同步电机坐标变换的方法及应用 #### 三相到两相同步旋转坐标系的扩展 对于传统的三相永磁同步电机,常使用坐标变换是从三相静止坐标系 (abc) 到两相同步旋转坐标系(dq)[^1]。然而,在处理多相系统如五相永磁同步电机时,则需考虑如何有效地将更多的相数映射至更少维度的空间向量表示形式。 #### 多相系统的克拉克变换与帕克变换 针对五相永磁同步电机,首先会利用广义克拉克变换(Clarke Transformation),把五相电流转换成四轴αβγδ静态直角坐标系中的四个分量;之后再经由帕克变换(Park Transformation),进一步投影到两个正交的d-q轴上完成最终的目标——即获得便于实施磁场定向控制所需的直流信号输入[^2]。 ```matlab % MATLAB code snippet demonstrating the transformation process from abcde to dq frame. function [id,iq]=fivePhaseToDQ(iA,iB,iC,iD,iE,theta) % Convert five-phase currents into four-axis stationary reference frame using generalized Clarke transform iAlpha = -(iA+iB)/sqrt(3); iBeta = (-iA+2*iB-iC)/sqrt(6); iGamma = (-iA-iC+2*iD)/sqrt(6); IDelta = (-iA-iB-iC-iD+4*iE)/sqrt(10); % Apply Park's Transform converting alpha-beta-gamma-delta components into direct-quadrature axes id = cos(theta)*iAlpha + sin(theta)*iBeta; iq = -sin(theta)*iAlpha + cos(theta)*iBeta; end ``` 这种从多相到双轴的方式不仅适用于五相情况,也可以推广应用于其他更多相位数量的情况之中。值得注意的是,在实际工程实践中还需要考虑到诸如硬件限制等因素的影响来调整具体的参数设置[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值