最近开始学习电机控制,仅以此记录自己的学习进度。
一、坐标变换
1.1. 三相静止坐标系(
a
b
c
abc
abc)和两相静止坐标系(
α
/
β
\alpha/\beta
α/β)之间的变换
根据图中所示
a
b
c
abc
abc坐标系和
α
β
\alpha\beta
αβ坐标系之间的关系,可以列出以下等式
U
α
=
U
a
−
U
b
c
o
s
(
π
3
)
−
U
c
c
o
s
(
π
3
)
U
β
=
U
b
c
o
s
(
π
6
)
−
U
c
c
o
s
(
π
6
)
U_\alpha = U_a - U_bcos(\frac \pi3) - U_ccos(\frac \pi3) \\ U_\beta = U_bcos(\frac \pi6) - U_ccos(\frac \pi6)
Uα=Ua−Ubcos(3π)−Uccos(3π)Uβ=Ubcos(6π)−Uccos(6π)
化简即可得到
a
b
c
abc
abc坐标系转为
α
β
\alpha\beta
αβ坐标系的变换矩阵,即
C
l
a
r
k
e
Clarke
Clarke变换:
(1.1)
[
U
α
U
β
]
=
K
[
1
−
1
2
−
1
2
0
3
2
−
3
2
]
[
U
a
U
b
U
c
]
\left[ \begin{matrix} U_\alpha\\ U_\beta\\ \end{matrix} \right]= K\left[ \begin{matrix} 1 & -\frac12 & -\frac12 \\ 0 & \frac {\sqrt3}2 & -\frac {\sqrt3}2 \\ \end{matrix} \right] \left[ \begin{matrix} U_a\\ U_b\\ U_c\\ \end{matrix} \right] \tag {1.1}
[UαUβ]=K[10−2123−21−23]⎣⎡UaUbUc⎦⎤(1.1)
考虑变换前后的幅值相等,则式中
K
K
K等于
2
3
\frac 23
32;如果要求变换前后功率等,则式中
K
K
K等于
2
3
\sqrt\frac 23
32。很多资料都没有详细说明这两种变换的系数是怎么来的,一度让我很疑惑。通过查资料和推导,终于怎么回事了。恒幅值变换是指
U
α
U_\alpha
Uα的幅值和
U
a
U_a
Ua相等,而恒功率变换是指变换前后的功率相等,下面给出推导过程。
设三相电压是平衡的,其幅值为
U
m
a
x
U_{max}
Umax,则:
(1.2)
[
U
a
U
b
U
c
]
=
U
m
a
x
[
c
o
s
(
φ
)
c
o
s
(
φ
−
2
π
3
)
c
o
s
(
φ
+
2
π
3
)
]
\left[ \begin{matrix} U_a \\ U_b \\ U_c \end{matrix} \right]= U_{max}\left[ \begin{matrix} cos(\varphi) \\ cos(\varphi - \frac {2\pi}3) \\ cos(\varphi + \frac {2\pi}3) \end{matrix} \right] \tag {1.2}
⎣⎡UaUbUc⎦⎤=Umax⎣⎡cos(φ)cos(φ−32π)cos(φ+32π)⎦⎤(1.2)
将式
(
1.2
)
(1.2)
(1.2)代入式
(
1.1
)
(1.1)
(1.1)中,可以得到
U
α
U_\alpha
Uα的表达式如下:
U
α
=
U
m
a
x
(
c
o
s
φ
−
1
2
c
o
s
(
φ
−
2
π
3
)
−
1
2
c
o
s
(
φ
+
2
π
3
)
=
3
2
c
o
s
φ
U_\alpha = U_{max}(cos\varphi - \frac 12cos(\varphi - \frac {2\pi}3)- \frac 12cos(\varphi + \frac {2\pi}3) = \frac 32cos\varphi
Uα=Umax(cosφ−21cos(φ−32π)−21cos(φ+32π)=23cosφ
可见变换后的
U
α
U_\alpha
Uα幅值是变换前
U
a
U_a
Ua的1.5倍。因此,为了使
U
a
U_a
Ua的幅值与
U
α
U_\alpha
Uα的幅值相等,则需要在变换矩阵前乘以
2
3
\frac 23
32。
设变换前的电压有效值是
U
U
U,电流有效值是
I
I
I,则容易得出变换后的有效值是
1.5
U
1.5U
1.5U,电流有效值是
1.5
I
1.5I
1.5I。可以分别得出变换前后的功率
P
1
P_1
P1和
P
2
P_2
P2:
P
1
=
U
∗
I
∗
3
=
3
U
I
P
2
=
1.5
U
∗
1.5
I
∗
2
=
4.5
U
I
P_1 = U*I*3 = 3UI\\ P_2 = 1.5U*1.5I*2 = 4.5UI
P1=U∗I∗3=3UIP2=1.5U∗1.5I∗2=4.5UI
可见变换前后的功率不相等,需要给变换矩阵乘以一个系数
K
K
K使其相等。当变换矩阵乘以系数
K
K
K之后,变换前后的功率的表达式如下:
P
1
=
U
∗
I
∗
3
=
3
U
I
P
2
=
1.5
∗
K
∗
U
∗
1.5
∗
K
∗
i
∗
2
=
4.5
K
2
U
I
P_1 = U*I*3 = 3UI \\ P_2 = 1.5*K*U*1.5*K*i*2 = 4.5K^2UI
P1=U∗I∗3=3UIP2=1.5∗K∗U∗1.5∗K∗i∗2=4.5K2UI
令式中
P
1
=
P
2
P_1 = P_2
P1=P2,即可得到
K
=
2
3
K = \sqrt{\frac 23}
K=32。
因此,在式 ( 1.1 ) (1.1) (1.1)中,当 K = 2 3 K=\frac 23 K=32,则为恒幅值变换;当 K = 2 3 K=\sqrt{\frac 23} K=32,则为恒功率变换。
根据同样的思路,或者可以得到 C l a r k Clark Clark反变换表达式:
(1.3)
[
U
a
U
b
U
c
]
=
K
[
1
0
−
1
2
3
2
−
1
2
−
3
2
]
]
[
U
α
U
β
]
\left[ \begin{matrix} U_a\\ U_b\\ U_c\\ \end{matrix} \right]= K\left[ \begin{matrix} 1 & 0\\ -\frac 12 & \frac {\sqrt3}2\\ -\frac 12 & -\frac {\sqrt3}2]\\ \end{matrix} \right] \left[ \begin{matrix} U_\alpha\\ U_\beta \end{matrix} \right] \tag {1.3}
⎣⎡UaUbUc⎦⎤=K⎣⎢⎡1−21−21023−23]⎦⎥⎤[UαUβ](1.3)
其中,当
K
=
2
3
K=\frac 23
K=32,则为恒幅值变换;
当 K = 2 3 K=\sqrt{\frac 23} K=32,则为恒功率变换。
式 ( 1.1 ) (1.1) (1.1)中的矩阵和式 ( 1.3 ) (1.3) (1.3)中的矩阵相乘的结果是单位矩阵。
1.2 两相静止坐标系( α β \alpha\beta αβ)和两相旋转坐标系( d q dq dq)之间的变换
根据图中所示
α
β
\alpha\beta
αβ坐标系和
d
q
dq
dq坐标系之间的关系,可以列出以下等式:
U
d
=
U
α
c
o
s
θ
+
U
β
s
i
n
θ
U
q
=
−
U
α
s
i
n
θ
+
U
β
c
o
s
θ
U_d = U_\alpha cos\theta + U_\beta sin\theta\\ U_q = -U_\alpha sin\theta + U_\beta cos\theta
Ud=Uαcosθ+UβsinθUq=−Uαsinθ+Uβcosθ
于是可以得到
α
β
\alpha\beta
αβ坐标系转换为
d
q
dq
dq坐标系的变换矩阵,即
P
a
r
k
Park
Park变换:
(1.4) [ U d U q ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ U α U β ] \left[ \begin{matrix} U_d\\ U_q \end{matrix} \right]= \left[ \begin{matrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \\ \end{matrix} \right] \left[ \begin{matrix} U_\alpha \\ U_\beta \end{matrix} \right] \tag {1.4} [UdUq]=[cosθ−sinθsinθcosθ][UαUβ](1.4)
同理,由图中也可以将
α
β
\alpha\beta
αβ坐标系下的向量由
d
q
dq
dq坐标表示:
U
α
=
U
d
c
o
s
θ
−
U
q
s
i
n
θ
U
β
=
U
d
s
i
n
θ
+
U
q
c
o
s
θ
U_\alpha = U_dcos\theta - U_qsin\theta \\ U_\beta = U_dsin\theta + U_qcos\theta \\
Uα=Udcosθ−UqsinθUβ=Udsinθ+Uqcosθ
于是可以得到
d
q
dq
dq坐标系转换为
α
β
\alpha\beta
αβ坐标系的变换矩阵,即
P
a
r
k
Park
Park反变换:
(1.5)
[
U
α
U
β
]
=
[
c
o
s
θ
−
s
i
n
θ
s
i
n
θ
c
o
s
θ
]
[
U
d
U
q
]
\left[ \begin{matrix} U_\alpha \\ U_\beta \end{matrix} \right]= \left[ \begin{matrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{matrix} \right] \left[ \begin{matrix} U_d \\ U_q \end{matrix} \right] \tag{1.5}
[UαUβ]=[cosθsinθ−sinθcosθ][UdUq](1.5)
1.3 三相静止坐标系( a b c abc abc)和两相旋转坐标系( d q dq dq)之间的变换
结合
C
l
a
r
k
e
Clarke
Clarke变换和
P
a
r
k
Park
Park变换可以得到
a
b
c
abc
abc坐标系和
d
q
dq
dq坐标系之间的变换如下:
(1.6)
[
U
d
U
q
]
=
K
[
c
o
s
θ
c
o
s
(
θ
−
2
π
3
)
c
o
s
(
θ
+
2
π
3
)
−
s
i
n
θ
−
s
i
n
(
θ
−
2
π
3
)
−
s
i
n
(
θ
+
2
π
3
)
]
[
U
a
U
b
U
c
]
\left[ \begin{matrix} U_d \\ U_q \end{matrix} \right]= K\left[ \begin{matrix} cos\theta & cos(\theta - \frac {2\pi}3) & cos(\theta + \frac {2\pi}3) \\ -sin\theta & -sin(\theta - \frac {2\pi}3) & -sin(\theta + \frac {2\pi}3) \end{matrix} \right] \left[ \begin{matrix} U_a\\ U_b\\ U_c \end{matrix} \right] \tag{1.6}
[UdUq]=K[cosθ−sinθcos(θ−32π)−sin(θ−32π)cos(θ+32π)−sin(θ+32π)]⎣⎡UaUbUc⎦⎤(1.6)
恒幅值变换时,
K
=
2
3
K=\frac 23
K=32;恒功率变换时,
K
=
2
3
K = \sqrt {\frac 23}
K=32。
其反变换为:
(1.7)
[
U
a
U
b
U
c
]
=
K
[
c
o
s
θ
−
s
i
n
θ
c
o
s
(
θ
−
2
π
3
)
−
s
i
n
(
θ
−
2
π
3
)
c
o
s
(
θ
+
2
π
3
)
−
s
i
n
(
θ
+
2
π
3
)
]
[
U
d
U
q
]
\left[ \begin{matrix} U_a\\ U_b\\ U_c \end{matrix} \right]= K\left[ \begin{matrix} cos\theta & -sin\theta \\ cos(\theta - \frac {2\pi}3) & -sin(\theta - \frac{2\pi}3) \\ cos(\theta + \frac {2\pi}3) & -sin(\theta + \frac{2\pi}3) \end{matrix} \right] \left[ \begin{matrix} U_d\\ U_q \end{matrix} \right] \tag{1.7}
⎣⎡UaUbUc⎦⎤=K⎣⎡cosθcos(θ−32π)cos(θ+32π)−sinθ−sin(θ−32π)−sin(θ+32π)⎦⎤[UdUq](1.7)
恒幅值变换时,
K
=
1
K=1
K=1;恒功率变换时,
K
=
2
3
K = \sqrt {\frac 23}
K=32。
二、永磁同步电机的数学模型
2.1 永磁同步电机在三相静止 ( a b c ) (abc) (abc)坐标系下的数学模型
永磁同步电机在三相静止坐标系下的磁链方程为
(2.1)
[
ψ
a
ψ
b
ψ
c
]
=
[
L
a
a
M
a
b
M
a
c
M
b
a
L
b
b
M
b
c
M
c
a
M
c
b
L
c
c
]
[
i
a
i
b
i
c
]
+
ψ
f
[
c
o
s
θ
c
o
s
(
θ
−
2
π
3
)
c
o
s
(
θ
+
2
π
3
]
]
\left[ \begin{matrix} \psi_a \\ \psi_b \\ \psi_c \end{matrix} \right]= \left[ \begin{matrix} L_{aa} & M_{ab} & M_{ac}\\ M_{ba} & L_{bb} & M_{bc}\\ M_{ca} & M_{cb} & L_{cc}\\ \end{matrix} \right] \left[ \begin{matrix} i_a\\ i_b\\ i_c \end{matrix} \right] + \psi_f\left[ \begin{matrix} cos\theta \\ cos(\theta - \frac {2\pi}3) \\ cos(\theta + \frac {2\pi}3] \end{matrix} \right] \tag {2.1}
⎣⎡ψaψbψc⎦⎤=⎣⎡LaaMbaMcaMabLbbMcbMacMbcLcc⎦⎤⎣⎡iaibic⎦⎤+ψf⎣⎡cosθcos(θ−32π)cos(θ+32π]⎦⎤(2.1)
式中:
ψ
f
\psi_f
ψf——永磁体磁链;
θ
\theta
θ——电机转子磁极位置,即永磁体N极与
a
a
a相轴线之间的夹角;
L
a
a
、
L
b
b
、
L
c
c
L_{aa}、L_{bb}、L_{cc}
Laa、Lbb、Lcc——定子绕组的自感,且在理想情况下,
L
a
a
=
L
b
b
=
L
c
c
L_{aa} = L_{bb} = L_{cc}
Laa=Lbb=Lcc;
ψ
a
、
ψ
b
、
ψ
c
\psi_a、\psi_b、\psi_c
ψa、ψb、ψc——三相静止坐标系下的定子磁链;
M
a
b
、
M
a
c
、
M
b
a
、
M
b
c
、
M
c
a
、
M
c
b
M_{ab}、M_{ac}、M_{ba}、M_{bc}、M_{ca}、M_{cb}
Mab、Mac、Mba、Mbc、Mca、Mcb——定子三相绕组间的互感。
永磁同步电机在三相静止坐标系下的定子电压方程为:
(2.2)
[
u
a
u
b
u
c
]
=
[
R
s
0
0
0
R
s
0
0
0
R
s
]
[
i
a
i
b
i
c
]
+
p
[
ψ
a
ψ
b
ψ
c
]
\left[ \begin{matrix} u_a \\ u_b \\ u_c \end{matrix} \right]= \left[ \begin{matrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{matrix} \right] \left[ \begin{matrix} i_a \\ i_b \\ i_c \end{matrix} \right] + p\left[ \begin{matrix} \psi_a \\ \psi_b \\ \psi_c \end{matrix} \right] \tag {2.2}
⎣⎡uaubuc⎦⎤=⎣⎡Rs000Rs000Rs⎦⎤⎣⎡iaibic⎦⎤+p⎣⎡ψaψbψc⎦⎤(2.2)
式中:
u
a
、
u
b
、
u
c
u_a、u_b、u_c
ua、ub、uc——定子三相电压;
R
s
R_s
Rs——定子电阻;
i
a
、
i
b
、
i
c
i_a、i_b、i_c
ia、ib、ic——定子三相电流;
p
p
p——微分算子,表示对时间的微分。
式
(
2.2
)
(2.2)
(2.2)的物理意义表明,定子三相电压是由定子电阻上的电压和电感(包括自感和互感)电压相加得来的。
永磁同步电机在三相静止坐标系下的转矩方程为:
(2.3)
T
e
=
1
2
p
n
ψ
f
(
i
a
c
o
s
θ
+
i
b
c
o
s
(
θ
−
2
π
3
)
+
i
c
c
o
s
(
θ
+
2
π
3
)
)
T_e = \frac 12 p_n \psi_f (i_acos\theta + i_bcos(\theta - \frac {2\pi}3)+i_ccos(\theta + \frac {2\pi}3)) \tag {2.3}
Te=21pnψf(iacosθ+ibcos(θ−32π)+iccos(θ+32π))(2.3)
式中:
T
e
T_e
Te——电机的电磁转矩;
p
n
p_n
pn——电机的极对数。
电机的运动方程为:
(2.4)
T
e
=
T
L
+
J
p
n
d
ω
e
d
t
+
B
p
n
ω
e
+
K
p
n
θ
T_e = T_L + \frac Jp_n\frac {d\omega_e}{dt} + \frac B{p_n} \omega_e + \frac K{p_n}\theta \tag {2.4}
Te=TL+pJndtdωe+pnBωe+pnKθ(2.4)
式中:
T
L
T_L
TL——负载转矩;
B
B
B——摩擦系数;
K
K
K——扭矩系数;
J
J
J——转动惯量。
ω
e
\omega_e
ωe——电气角速度。与机械角速度的关系是:
ω
e
=
p
n
ω
\omega_e = p_n\omega
ωe=pnω。
2.2 永磁同步电机在两相同步旋转 ( d q ) (dq) (dq)坐标系下的数学模型
永磁同步电机在两相同步旋转坐标系下的电压方程为:
(2.5)
{
u
d
=
R
s
i
d
+
p
ψ
d
−
ω
r
ψ
q
u
q
=
R
s
i
q
+
p
ψ
q
+
ω
r
ψ
d
\left\{ \begin{aligned} u_d = R_si_d+p\psi_d-\omega_r\psi_q \\ u_q = R_si_q + p\psi_q +\omega_r\psi_d \end{aligned} \right. \tag{2.5}
{ud=Rsid+pψd−ωrψquq=Rsiq+pψq+ωrψd(2.5)
式中:
u
d
、
u
q
、
i
d
、
i
q
、
ψ
d
、
ψ
q
u_d、u_q、i_d、i_q、\psi_d、\psi_q
ud、uq、id、iq、ψd、ψq——分别表示定子d轴和q轴的电压、电流、磁通;
p
p
p——为微分算子,表示对时间的微分;
ω
r
\omega_r
ωr——转子的电角速度。
推导过程如下:
根据
(
1.3
)
(1.3)
(1.3)节中给出的两相旋转坐标系到三相静止坐标系中的变换公式,取A相单独分析,可以得到:
(2.6)
{
u
a
=
K
(
u
d
c
o
s
θ
−
u
q
s
i
n
θ
)
i
a
=
K
(
i
d
c
o
s
θ
−
i
q
s
i
n
θ
)
ψ
a
=
K
(
ψ
d
c
o
s
θ
−
ψ
q
s
i
n
θ
)
\left\{ \begin{aligned} & u_a = K(u_dcos\theta - u_qsin\theta) \\ & i_a = K(i_dcos\theta - i_qsin\theta) \\ & \psi_a = K(\psi_dcos\theta - \psi_qsin\theta) \end{aligned} \right. \tag{2.6}
⎩⎪⎨⎪⎧ua=K(udcosθ−uqsinθ)ia=K(idcosθ−iqsinθ)ψa=K(ψdcosθ−ψqsinθ)(2.6)
由
2.1
2.1
2.1节可知,在三相静止坐标系下的A相电压方程为:
(2.7)
u
a
=
i
a
R
s
+
p
ψ
a
u_a = i_aR_s + p\psi_a \tag{2.7}
ua=iaRs+pψa(2.7)
将式
(
2.6
)
(2.6)
(2.6)中的表达式代入式
(
2.7
)
(2.7)
(2.7)中,整理后可得:
(2.8)
(
u
d
−
R
s
i
d
−
p
ψ
d
+
ψ
q
p
θ
)
c
o
s
θ
−
(
u
q
−
R
s
i
q
−
p
ψ
q
−
ψ
d
p
θ
)
s
i
n
θ
=
0
(u_d - R_si_d-p\psi_d+\psi_qp\theta)cos\theta - (u_q-R_si_q - p \psi_q - \psi_dp\theta)sin\theta = 0 \tag{2.8}
(ud−Rsid−pψd+ψqpθ)cosθ−(uq−Rsiq−pψq−ψdpθ)sinθ=0(2.8)
位置角度
θ
\theta
θ的微分便是旋转角速度,即:
(2.9)
p
θ
=
ω
r
p\theta = \omega_r \tag{2.9}
pθ=ωr(2.9)
对于式
(
2.8
)
(2.8)
(2.8)来说,由于位置角度
θ
\theta
θ为任意值,因此下列两个式子分别成立:
{
u
d
=
R
s
i
d
+
p
ψ
d
−
ω
r
ψ
q
u
q
=
R
s
i
q
+
p
ψ
q
+
ω
r
ψ
d
\left\{ \begin{aligned} u_d = R_si_d+p\psi_d-\omega_r\psi_q \\ u_q = R_si_q + p\psi_q +\omega_r\psi_d \end{aligned} \right.
{ud=Rsid+pψd−ωrψquq=Rsiq+pψq+ωrψd
推导完毕。
磁链方程为:
{
ψ
d
=
L
d
i
d
+
ψ
f
ψ
q
=
L
q
i
q
\left\{ \begin{aligned} &\psi_d = L_di_d+\psi_f \\ &\psi_q= L_qi_q \end{aligned} \right.
{ψd=Ldid+ψfψq=Lqiq
转矩方程为:
T
e
=
K
p
n
[
ψ
f
i
q
+
(
L
d
−
L
q
)
i
d
i
q
]
T_e = Kp_n[\psi_fi_q + (L_d-L_q)i_di_q]
Te=Kpn[ψfiq+(Ld−Lq)idiq]
当
K
=
3
2
K=\frac 32
K=23,则为恒幅值变换;当
K
=
1
K=1
K=1,则为恒功率变换。
在三相坐标系下的复杂的电感耦合关系,在DQ坐标系下不复存在。但 L d L_d Ld和 L q L_q Lq与三相坐标系下的各种电感关系还没有理清楚。