简述:lightweight_openpose作为轻量性模型,相较于openpose,安装简单,实时性强,准确率也并没有将太多,速度与精度都不错,仅2MB左右。
这是几个轻量型的目标检测模型,第二个就是我们要用的
https://github.com/dog-qiuqiu/Yolo-Fastest
https://codechina.csdn.net/mirrors/Daniil-Osokin/lightweight-human-pose-estimation.pytorch
https://codechina.csdn.net/mirrors/YuliangXiu/MobilePose-pytorch
https://codechina.csdn.net/EricLee/handpose_x
下载模型文件
https://pan.baidu.com/s/1Qjwq7uFDFSt60MQBwJW7Rg密码:jybl
放到github下载的lightweight_openpose文件夹下,在放入一个updown.mp4文件。
打开demo-右上角edit-configurations,在paratemers中输入:–checkpoint-path checkpoint_iter_370000.pth --video updown.mp4
– video 0 代表打开摄像头
过程中可能会需要下载pycocotools。
这个没有Windows版,只有Linux版,直接pip install pycocotools可能安装会不顺利,各种方法因人而异。
方法一:
pip install pycocotools-windows
我用的就是这个
方法二:
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
这个是github上大佬复写的Windows版,我试了不好用
方法三:
https://github.com/philferriere/cocoapi下载源码,并进行解压。以管理员身份打开 CMD 终端,并切换到 cocoapi\PythonAPI目录。运行以下指令:
# install pycocotools locally
python setup.py build_ext --inplace
# install pycocotools to the Python site-packages
python setup.py build_ext install
这个方法编译需要visual studio2015或者visual cpp build tools2015及以上
方法四:
自己直接复制编译好的,到你的\Lib\site-packages目录中