利用Supabase实现高效RAG模型:从设置到实现

引言

在人工智能和数据库管理的交汇处,使用Supabase来实现RAG(Retrieval-Augmented Generation)模型为开发者提供了一种强大的方案。Supabase是Firebase的开源替代方案,基于PostgreSQL运行,并使用pgvector在表中存储嵌入。这篇文章将带您从环境配置到代码实现,全面了解如何利用Supabase进行RAG模型的构建。

主要内容

环境设置

在开始之前,确保您拥有OpenAI和Supabase的API密钥。

  1. 获取OpenAI API密钥
    • 前往您的OpenAI账户,生成新的API密钥。
  2. 获取Supabase URL和服务密钥
    • 登录Supabase,查看项目的API设置,获取项目URL和服务角色API密钥。

为环境变量设置:

export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-service-key>
export OPENAI_API_KEY=<your-openai-api-key>

配置Supabase数据库

如果您还没有Supabase数据库,可以通过这里设置。

SQL配置

启用pgvector扩展并创建存储向量的表:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值