引言
在人工智能和数据库管理的交汇处,使用Supabase来实现RAG(Retrieval-Augmented Generation)模型为开发者提供了一种强大的方案。Supabase是Firebase的开源替代方案,基于PostgreSQL运行,并使用pgvector在表中存储嵌入。这篇文章将带您从环境配置到代码实现,全面了解如何利用Supabase进行RAG模型的构建。
主要内容
环境设置
在开始之前,确保您拥有OpenAI和Supabase的API密钥。
- 获取OpenAI API密钥:
- 前往您的OpenAI账户,生成新的API密钥。
- 获取Supabase URL和服务密钥:
- 登录Supabase,查看项目的API设置,获取项目URL和服务角色API密钥。
为环境变量设置:
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-service-key>
export OPENAI_API_KEY=<your-openai-api-key>
配置Supabase数据库
如果您还没有Supabase数据库,可以通过这里设置。
SQL配置
启用pgvector扩展并创建存储向量的表: