# 掌握Tongyi Qwen:与Langchain集成的完整指南,让你的AI项目如虎添翼
## 引言
随着人工智能技术的快速发展,Tongyi Qwen作为阿里巴巴达摩院开发的大型语言模型,也逐渐成为了开发者们关注的焦点。它不仅能够理解自然语言,还能在多个领域为用户提供服务。在本文中,我们将探讨如何通过Langchain与Tongyi Qwen进行集成,帮助你在项目中更有效地应用这项新兴技术。
## 主要内容
### 安装与配置
要开始使用Tongyi Qwen,首先需要安装必要的Python包。使用以下命令进行安装:
```bash
%pip install --upgrade --quiet dashscope
安装完成后,获取新的API密钥,并设置环境变量:
# 获取新的API密钥: https://help.aliyun.com/document_detail/611472.html
from getpass import getpass
DASHSCOPE_API_KEY = getpass()
import os
os.environ["DASHSCOPE_API_KEY"] = DASHSCOPE_API_KEY
构建聊天模型
使用ChatTongyi
类来初始化聊天模型:
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage
chatLLM = ChatTongyi(streaming=True)
res = chatLLM.stream([HumanMessage(content="hi")], streaming=True)
for r in res:
print("chat resp:", r)
上述代码初始化了一个聊天模型实例,并通过流式响应处理对话。# 使用API代理服务提高访问稳定性
借助工具功能扩展模型能力
Tongyi Qwen支持工具调用API,这允许开发者定义工具及其参数,并让模型返回一个JSON对象,用于调用工具和输入相关参数。
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.tools import tool
@tool
def multiply(first_int: int, second_int: int) -> int:
"""Multiply two integers together."""
return first_int * second_int
llm = ChatTongyi(model="qwen-turbo")
llm_with_tools = llm.bind_tools([multiply])
msg = llm_with_tools.invoke("What's 5 times forty two")
print(msg)
处理复杂数据类型
Tongyi Qwen还支持处理复杂的数据类型,例如图片。下面是一个例子,展示如何利用其视觉模型处理图像:
from langchain_community.chat_models import ChatTongyi
from langchain_core.messages import HumanMessage
chatLLM = ChatTongyi(model_name="qwen-vl-max")
image_message = {
"image": "https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png",
}
text_message = {
"text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
chatLLM.invoke([message])
常见问题和解决方案
-
API访问受限:由于网络限制,建议使用API代理服务来提高访问的稳定性。
-
版本兼容性问题:确保Python包版本与文档一致,避免因版本不匹配导致的错误。
总结和进一步学习资源
通过与Langchain的集成,Tongyi Qwen为开发者提供了一个强大且灵活的平台,能够在语言理解、任务执行和复杂数据处理等方面大展身手。推荐进一步学习的资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---