[掌握Tongyi Qwen:与Langchain集成的完整指南,让你的AI项目如虎添翼]

# 掌握Tongyi Qwen:与Langchain集成的完整指南,让你的AI项目如虎添翼

## 引言

随着人工智能技术的快速发展,Tongyi Qwen作为阿里巴巴达摩院开发的大型语言模型,也逐渐成为了开发者们关注的焦点。它不仅能够理解自然语言,还能在多个领域为用户提供服务。在本文中,我们将探讨如何通过Langchain与Tongyi Qwen进行集成,帮助你在项目中更有效地应用这项新兴技术。

## 主要内容

### 安装与配置

要开始使用Tongyi Qwen,首先需要安装必要的Python包。使用以下命令进行安装:

```bash
%pip install --upgrade --quiet dashscope

安装完成后,获取新的API密钥,并设置环境变量:

# 获取新的API密钥: https://help.aliyun.com/document_detail/611472.html
from getpass import getpass

DASHSCOPE_API_KEY = getpass()
import os
os.environ["DASHSCOPE_API_KEY"] = DASHSCOPE_API_KEY

构建聊天模型

使用ChatTongyi类来初始化聊天模型:

from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(streaming=True)
res = chatLLM.stream([HumanMessage(content="hi")], streaming=True)
for r in res:
    print("chat resp:", r)

上述代码初始化了一个聊天模型实例,并通过流式响应处理对话。# 使用API代理服务提高访问稳定性

借助工具功能扩展模型能力

Tongyi Qwen支持工具调用API,这允许开发者定义工具及其参数,并让模型返回一个JSON对象,用于调用工具和输入相关参数。

from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.tools import tool

@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int

llm = ChatTongyi(model="qwen-turbo")
llm_with_tools = llm.bind_tools([multiply])

msg = llm_with_tools.invoke("What's 5 times forty two")
print(msg)

处理复杂数据类型

Tongyi Qwen还支持处理复杂的数据类型,例如图片。下面是一个例子,展示如何利用其视觉模型处理图像:

from langchain_community.chat_models import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(model_name="qwen-vl-max")
image_message = {
    "image": "https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png",
}
text_message = {
    "text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
chatLLM.invoke([message])

常见问题和解决方案

  1. API访问受限:由于网络限制,建议使用API代理服务来提高访问的稳定性。

  2. 版本兼容性问题:确保Python包版本与文档一致,避免因版本不匹配导致的错误。

总结和进一步学习资源

通过与Langchain的集成,Tongyi Qwen为开发者提供了一个强大且灵活的平台,能够在语言理解、任务执行和复杂数据处理等方面大展身手。推荐进一步学习的资源:

参考资料

  1. Langchain GitHub 仓库
  2. 阿里巴巴达摩院达摩模型文档
  3. DashScope API

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值