基于相关性分析的工业时序数据异常检测

基于相关性分析的工业时序数据异常检测

在这篇文章中,作者提出了一种基于序列相关性分析的多维时间序列异常检测方法。在这个方法中,首先会计算多维时间序列的相关性矩阵,然后根据相关性矩阵构建一个时序相关图模型。在这个模型中,每个顶点代表一个时间序列,每条边的权值表示两个时间序列之间的相关性。

然后,作者通过在时序相关图上的相关性强度来划分时间序列团。具体来说,如果检测到边的权值低于给定的相关性阈值θc,那么就认为异常存在于该边相连的两个点之中。

具体过程如下:

数据预处理:由于采集的原始工业时间序列数据里存在一些数据质量问题[4,5],因此在数据预处理部分,需要对原始的时间序列数据进行时标对齐、缺失值填充等准备性操作,将整理好的高质量数据输入到后面模块进行计算分析;

• 时序数据相关性计算:将准备好的时间序列数据按工作周期模式进行分段,得到若干个时间子序列组,对每个子序列组分别进行序列 PAA 处理(第 3.1 节)、计算相关性参数生成相关性矩阵(第 3.2 节),根据矩阵中的元素值建立时序相关性图,并根据相关性阈值划分图上的时序相关团,该部分具体算法及案例分析在第 3.3 节中介绍;

• 异常检测:在异常检测部分,我们利用已计算得到的时序相关性图模型对待检测数据中隐藏的异常数据进行检测识别.对于彼此存在相关性的序列集合,我们采用基于相关性参数计算异常检测的方法,对时序相关团内以及不同团之间分别进行异常数据挖掘与识别.对于与其他序列无明显相关的序列,我们进行单维序列异常检测.

数据预处理

PAA方法的主要步骤如下:

  1. 将原始时间序列分割成w个相等长度的段。
  2. 对每一段计算其均值。
  3. 用这些均值来代表原始时间序列。

在这里插入图片描述

import numpy as np

# 假设x是一个numpy数组,代表原始时间序列
x = np.array(...)

# w是我们想要的段数
w = ...

# 计算每一段的长度
segment_size = len(x) // w

# 对x进行分段,并计算每一段的均值
paa = np.array([np.mean(x[i:i+segment_size]) for i in range(0, len(x), segment_size)])

在这里插入图片描述

序列相关性矩阵计算

分段的相关性矩阵如下
在这里插入图片描述

这里R是相关性系数,合并的相关性矩阵如下
在这里插入图片描述

时序相关性图模型

通过阈值进行加无向边
在这里插入图片描述

寻找连通图,并进行剪枝

要求C 中每个顶点的度大于等于该团内顶点数的一半,划分成时序相关团
在这里插入图片描述

计算团间的相关性,从每一个团选取一个特征序列,再把这些特征序列进行相关性分析作为团间相关性

特征序列选取时序相关团内与其他时间序列相关性最强的时间序列作为代表序列,序列 Si 是与时序相关团 C 中其他序列相关性参数值之和最大的序列

在这里插入图片描述
在这里插入图片描述

异常检测

通过阈值寻找异常边(团内团间均使用),通过异常边找到异常序列
在这里插入图片描述
在这里插入图片描述

文章没有给出相关性阈值如何得到

结果对比

对比AR算法和LCAD算法,表现较好

文章优缺点

优点:

  1. 该方法通过对高维时序数据相关性知识的挖掘,既节约了计算成本,又实现了对复杂模式的异常数据的精准识别。
  2. 在真实的工业设备传感器数据集上进行了大量实验,实验结果验证了该方法在高维时序数据的异常检测任务上的有效性。
  3. 通过对比实验,验证了该方法从性能上优于基于统计和基于机器学习模型的基准算法。

缺点:

  1. 虽然文献中提出了许多类型的异常检测方法, 但对于模式多变的单维时间序列, 异常数据和异常模式仍然难以准确发现。
  2. 文章并没有明确说明如何确定相关性阈值,这可能需要用户根据具体的应用场景和数据特性来确定,增加了使用难度。
<think>好的,我现在需要帮用户解决如何撰写日志异常检测领域的文献综述的问题。用户的需求集中在IT安全、日志分析和异常检测的学术论文写作方法上。首先,我得回顾用户提供的引用内容,看看里面有哪些有用的信息。 根据引用[1],日志异常检测的步骤包括日志收集、解析、特征提取和异常检测,之前的工作已经对日志解析方法做了综述,所以文献综述可能需要涵盖这些步骤,尤其是特征提取和机器学习模型的应用。监督和无监督学习方法是重点分类,需要详细讨论。 引用[3]提到网络异常检测方法,特别是低秩分解方法,这可能可以扩展到日志分析中。用户可能需要比较不同方法的优缺点,比如时间相关性和空间相关性在日志中的表现。 引用[4]中的贡献部分指出,文献综述需要分类现有方法,回顾文献,分析挑战和未来趋势。这可能意味着用户的结构应该包括问题复杂性、方法分类、文献回顾、挑战与未来方向等部分。 用户的需求是撰写文献综述,所以结构方面需要明确。可能需要分为引言、研究现状、方法分类、技术挑战、未来趋势等部分。同时,用户提供的引用中提到了监督和无监督学习,以及低秩分解等方法,这些都是需要涵盖的内容。 还需要考虑文献的来源,比如会议论文、期刊文章,以及开源工具和数据集,如引用[1]提到的开源日志解析器。这可能提示用户需要在综述中包括现有工具和数据的评估。 用户可能需要具体的方法论,比如如何查找相关文献,如何分类不同的技术,如何分析优缺点。比如引用[4]中将深度学习异常检测分为3大类11小类,这样的分类方法可以借鉴。 另外,用户可能需要了解如何组织内容,比如按时间顺序、按技术分类或按应用场景。结合引用内容,按技术分类可能更合适,如监督学习、无监督学习、混合方法等。 需要提醒用户注意文献的全面性和代表性,确保涵盖经典和最新研究。同时,结合引用[2]中的计算机安全文献,可能涉及跨领域的研究,需要整合不同领域的成果。 可能还需要讨论评估指标和数据集,如引用[1]提到的公开数据集,这对文献综述的实证部分很重要。此外,挑战部分可以引用[3]和[4]提到的检测新异常类型、数据稀疏性等问题。 最后,未来趋势部分可以结合引用[3]中的低秩分解方法展望,以及引用[4]提到的深度学习机会,引导读者了解研究前沿。 总结下来,用户的文献综述需要结构清晰,涵盖方法分类、技术细节、挑战与趋势,并整合现有文献中的工具和数据资源。同时,需要结合监督与无监督学习,分析不同方法的适用场景,并讨论实际应用中的问题。</think>### 如何撰写日志异常检测领域的文献综述(IT安全/日志分析/异常检测) #### 一、文献综述核心结构 1. **引言部分** - 定义日志异常检测的重要性,说明其在IT安全中的作用(如入侵检测、系统故障预警)[^3][^4] - 提出研究问题:例如“当前日志异常检测方法的局限性与优化方向是什么?” 2. **研究现状与分类** - **按技术路线分类**: - 监督学习:依赖标记数据,如基于分类模型的异常识别[^1] - 无监督学习:基于离群点检测(如聚类、低秩分解) - 混合方法:结合规则引擎与深度学习 - **按处理阶段分类**: - 日志解析方法对比(如开源工具LogPAI、Drain的性能差异) - 特征提取技术(时序特征、语义嵌入) 3. **关键技术与挑战** - **技术瓶颈**: - 数据稀疏性:日志事件的长尾分布问题 - 实时性要求:流式日志处理的延迟优化 - **方法局限性**: - 监督学习依赖高质量标注数据 - 低秩分解对复杂异常模式的敏感性不足 4. **未来研究方向** - 结合因果推理的异常解释性研究 - 联邦学习在隐私保护型日志分析中的应用 --- #### 二、写作方法与资源建议 1. **文献检索策略** - **数据库选择**:IEEE Xplore、ACM Digital Library(覆盖IT安全顶级会议如CCS、NDSS) - **关键词组合**: ```plaintext ("log analysis" OR "system log") AND ("anomaly detection" OR "outlier detection") ``` 2. **文献分析与对比** - 使用表格对比方法(示例): | 方法类型 | 代表论文 | 准确率 | 实时性 | 适用场景 | |--------------|----------------|--------|--------|------------------| | 监督学习 | [作者A, 2021] | 92% | 低 | 标记数据完备场景 | | 低秩分解 | [作者B, 2020] | 85% | 高 | 多源日志关联分析 | 3. **实验数据与工具引用** - 公开数据集:HDFS Logs、BGL Log Dataset - 开源工具:LogPAI框架(包含解析器与特征提取模块) --- #### 三、注意事项 1. **批判性分析**:需明确指出现有方法在工业场景中的落地障碍(如日志格式异构性) 2. **跨领域融合**:可关联网络安全中的威胁情报分析技术[^2] ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值