pytorch修改网络结构后如何加装预训练模型

如果不知道如何使用预训练模型训练的朋友,使用resnet18模型训练自己的数据集的教程请看这篇博客

一、如果我们网络没任何修改
还是训练imagenet的数据集,1000个类别,那么只需以下代码:

model_ft = models.resnet18(pretrained=True)
model_ft = model_ft.to(device)


二、如果只修改训练自己数据集类别
如果我们训练自己的数据集,假如自己的数据集只有10个类别,那么需先加载预训练模型,然后修改最后的全连接层,改成以下代码加载预训练模型:

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 10)
model_ft = model_ft.to(device)


这里只是resnet18修改的方式,更多修改的方式请看官网教程

三、如果修改的resnet的网络结构
如果修改了resnet的网络结构,而不仅仅是修改了最后一层全连接层,比如加上注意力机制,而且还是训练自己的数据集,自己的数据集假如有10个类别,那么就得用以下方式加载预训练模型:

model_ft = models.resnet18(pretrained=False)

net_dict = model_ft.state_dict()
predict_model = torch.load('resnet18-5c106cde.pth')
state_dict = {k: v for k, v in predict_model.items() if k in net_dict.keys()}# 寻找网络中公共层,并保留预训练参数
net_dict.update(state_dict)  # 将预训练参数更新到新的网络层
model_ft.load_state_dict(net_dict)

# 修改最后一层全连接层的数量,改为分类种类的数量
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 10)
model_ft = model_ft.to(device)

 

  • 8
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
PyTorch是一个开源的深度学习框架,可以用于修改VGG16结构并利用预训练模型。VGG16是一个非常经典的卷积神经网络模型,它由多个卷积层和全连接层组成。 要修改VGG16结构,我们可以利用PyTorch提供的模型定义的灵活性。下面是一个示例代码,展示如何使用预训练模型加载VGG16并修改结构: ```python import torch import torch.nn as nn import torchvision.models as models # 加载预训练的VGG16模型 vgg16 = models.vgg16(pretrained=True) # 修改VGG16的结构 # 替换最后的全连接层,将输出类别数量改为新的值 num_classes = 10 # 新的类别数量 vgg16.classifier[6] = nn.Linear(4096, num_classes) # 冻结除最后一层全连接层以外的所有层的参数,使其不参与训练过程 for param in vgg16.features.parameters(): param.requires_grad = False # 将模型移动到GPU上(如果可用) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vgg16 = vgg16.to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(vgg16.classifier[6].parameters(), lr=0.001) # 进行训练和验证 # ... ``` 在这个示例中,我们首先使用`models.vgg16(pretrained=True)`加载预训练的VGG16模型。然后,我们通过修改`vgg16.classifier[6]`来替换最后的全连接层,以便适应新的类别数量。接下来,我们使用`torch.no_grad()`来冻结除了最后一层全连接层以外的所有层的参数,以防止它们在训练过程中被更新。然后,我们将模型移动到GPU上(如果可用),并定义损失函数和优化器。最后,我们可以用这个修改后的VGG16模型进行训练和验证。 通过修改VGG16结构并使用预训练模型,我们可以更加灵活地适应不同的任务,并在更短的时间内获得较好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值