Lecture 9 Flink流处理-DataStream开发 ch 3

1 Transformation

和dataset一样,dataStream也包括一系列的Transformation操作:

Overview | Apache Flink

1.1 keyby算子

package com.sjxy.flink.stream.source.transformation

import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}

/*
演示flink中keyby的用法
实现单词统计
 */
object KeyByDemo {
  def main(args: Array[String]): Unit = {
    //1 创建一个流处理的运行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    // 2 加载socketstream
    val socketDs: DataStream[String] = env.socketTextStream("node1", 9999)
    //3 对接收到的数据切分压平转成单词,1的元组
    val wordAndOneDs: DataStream[(String, Int)] = socketDs.flatMap(_.split(" ")).map(_ -> 1)
    // 4 按照单词分组
//    wordAndOneDs.keyBy(_._1).sum(1).print()
    wordAndOneDs.keyBy(0).sum(1).print()
    //5 启动
    env.execute()
  }
}

1.2  connect算子

package com.sjxy.flink.stream.source.transformation

import java.util.concurrent.TimeUnit

import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala.{ConnectedStreams, DataStream, StreamExecutionEnvironment}
import org.apache.flink.api.scala._
/*
演示flink中connect的用法,把两个数据流连接到一起
需求:
创建两个流,一个产生数值,一个产生字符串数据
使用connect连接两个流,结果如何
 */
object ConnectDemo {
  def main(args: Array[String]): Unit = {
    //1 创建一个流处理的运行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    // 2 加载source
    val numDs: DataStream[Long] = env.addSource(new MyNumberSource)
    val strDs = env.addSource(new MyStrSource)
    // 3 使用connect进行两个连接操作
     val connectedDs: ConnectedStreams[Long, String] = numDs.connect(strDs)
    //传递两个函数,分别处理数据
    val resDs: DataStream[String] = connectedDs.map(l=>"long"+l, s=>"string"+s)
    //connect意义在哪里呢?只是把两个合并为一个,但是处理业务逻辑都是按照自己的方法处理?connect之后两条流可以共享状态数据
    resDs.print()
    //5 启动
    env.execute()
  }
}

//自定义产生递增的数字 第一个数据源
class MyNumberSource extends SourceFunction[Long]{
  var flag=true
  var num=1L
  override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
    while(flag){
      num +=1
      ctx.collect(num)
      TimeUnit.SECONDS.sleep(1)
    }
  }

  override def cancel(): Unit = {
    flag=false
  }
}


// 自定义产生从1开始递增字符串
class MyStrSource extends SourceFunction[String]{
  var flag=true
  var num=1L
  override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
    while(flag){
      num +=1
      ctx.collect("str"+num)
      TimeUnit.SECONDS.sleep(1)
    }
  }

  override def cancel(): Unit = {
    flag=false
  }
}

2 Sink

2.1 Sink到MySQL

        1.执行代码前使用datagrip等查看MySQL中使用的表,确认没有待插入的数据;

        2.执行代码;

        3.查看数据是否已插入。

package com.sjxy.flink.stream.source.sink


import java.sql.{Connection, DriverManager, PreparedStatement}


import org.apache.flink.api.scala._
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}

/*
flink程序计算结果保存到mysql中
 */
//定义student case class
case class Student1(id: Int, name: String, age: Int)

object SinkToMysqlDemo {
  def main(args: Array[String]): Unit = {
    /*
    读取数据然后直接写入mysql,需要自己实现mysql sinkfunction
    自定义class实现RichSinkFunction重写open,invoke,close方法
     */
    //1 创建一个流处理的运行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    // 2 加载source
    val stuDs: DataStream[Student1] = env.fromElements(Student1(0, "tony0422", 18))
    // 3 直接写出到mysql
    stuDs.addSink(new MySqlSinkFunction)
    // 4 执行
    env.execute()
  }
}

//准备自定义mysql sinkfunciton
class MySqlSinkFunction extends RichSinkFunction[Student1] {
  var ps: PreparedStatement = null
  var connection: Connection = null
  // 3.1 打开连接
  override def open(parameters: Configuration): Unit = {
    // 3.1.1驱动方式
    connection = DriverManager.getConnection("jdbc:mysql://node1:3306/ke", "root", "123456")
    //3.1.2准备sql语句插入数据到mysql表中
    var sql = "insert into t_student(name,age) values(?,?)";
    //3.1.3准备执行语句对象
    ps = connection.prepareStatement(sql)
  }
  //关闭连接
  override def close(): Unit = {
    if (connection != null) {
      connection.close()
    }
    if (ps != null) ps.close()
  }

  // 3.2 这个方法负责写入数据到mysql中,value就是上游datastream传入需要写入mysql的数据
  override def invoke(value: Student1, context: SinkFunction.Context): Unit = {
    // 3.2.1设置参数
    ps.setString(1, value.name)
    ps.setInt(2, value.age)
    //3.2.2执行插入动作
    ps.executeUpdate()
  }

}

2.2 Sink到Kafka

        1.先通过脚本启动Kafka;

        2.打开offset工具查看;

        3.执行代码。

package com.sjxy.flink.stream.source.sink

import java.util.Properties
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper
//import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper
import org.apache.kafka.clients.producer.ProducerConfig

/*
flink程序计算结果保存到kafka
 */
//定义student case class

case class Student(id: Int, name: String, age: Int)

object SinkToKafkaDemo {

  def main(args: Array[String]): Unit = {
    /*
    flink读取数据然后把数据写入kafka中
     */
    //1 创建一个流处理的运行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    // 2 加载source
    val stuDs: DataStream[Student] = env.fromElements(Student(0, "tony", 18))
    // 3 直接使用flinkkafkaproducer来生产数据到kafka
    //3.1 准备一个flinkkafkaproducer对象
    //写入kafka的数据类型
    //param1
    var topic="test"
    //param2
    val keyedSerializationWrapper: KeyedSerializationSchemaWrapper[String] =
      new KeyedSerializationSchemaWrapper(new SimpleStringSchema())
   //param3
    val prop = new Properties()
    prop.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092")
    val flinkKafkaProducer: FlinkKafkaProducer[String] = new FlinkKafkaProducer[String](
      topic,keyedSerializationWrapper,prop)
    // 4 sink 操作
    stuDs.map(_.toString).addSink(flinkKafkaProducer)
    // 5 执行
    env.execute()
  }
}

说明:Kafka一键启动有问题,参考Kafka简介与基本使用(Appendix Ⅰ)的2.1节中的另外部分。

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值