【PyTorch】模型的保存与读取

import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np

#torch.manual_seed(1)
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
x, y = Variable(x), Variable(y)

def save():
    net1 = nn.Sequential(
        nn.Linear(1,10),
        nn.ReLU(),
        nn.Linear(10,1)
    )
    optimizer = optim.SGD(net1.parameters(),lr = 0.5)
    loss_func = nn.MSELoss()
    for t in range(100):
        prediction = net1(x)
        loss = loss_func(prediction,y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    # plot result
    plt.figure(1, figsize=(10, 3))
    plt.subplot(131)
    plt.title('Net1')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    # 2 ways to save the net
    # print('net1:',net1)
    # print(net1.state_dict())
    torch.save(net1, 'net.pkl')  # save entire net
    torch.save(net1.state_dict(), 'net_params.pkl')  # save only the parameters

def restore_net():
    net2 = torch.load('net.pkl')
    prediction = net2(x)
    # plot result
    plt.subplot(132)
    plt.title('Net2')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

def restore_params():
    # restore only the parameters in net1 to net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )

    # copy net1's parameters into net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)

    # plot result
    plt.subplot(133)
    plt.title('Net3')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.show()

def main():
    save()
    restore_net()
    restore_params()

if __name__ == '__main__':
    main()

运行结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值