Matplotlib Image 图片

本文介绍了如何使用Matplotlib在Python中将随机矩阵转换为可视化图像,包括使用`imshow`函数、内插方法(如Nearest-neighbor)、添加colorbar以及调整colorbar大小。适合初学者理解图像绘制的基本技巧。
摘要由CSDN通过智能技术生成

转载请注明:虚幻私塾 » Matplotlib Image 图片

随机矩阵画图

这一节我们讲解怎样在matplotlib中打印出图像。这里我们打印出的是纯粹的数字,而非自然图像。 我们今天用这样 3x3 的 2D-array 来表示点的颜色,每一个点就是一个pixel。

import matplotlib.pyplot as plt
import numpy as np

a = np.array([0.313660827978, 0.365348418405, 0.423733120134,
              0.365348418405, 0.439599930621, 0.525083754405,
              0.423733120134, 0.525083754405, 0.651536351379]).reshape(3,3)

今天做出的图像就是这个样子:

3_4_1.png

三行三列的格子,a代表每一个值,图像右边有一个注释,白色代表值最大的地方,颜色越深值越小。

下面我们来看代码:

plt.imshow(a, interpolation='nearest', cmap='bone', origin='lower')

我们之前选cmap的参数时用的是:cmap=plt.cmap.bone,而现在,我们可以直接用单引号传入参数。 origin='lower'代表的就是选择的原点的位置。

出图方式

我们在这个链接 可以看到matplotlib官网上对于内插法的不同方法的描述。下图是一个示例:

3_4_2.png

这里我们使用的是内插法中的 Nearest-neighbor 的方法,其他的方式也都可以随意取选。

colorbar

下面我们添加一个colorbar ,其中我们添加一个shrink参数,使colorbar的长度变短为原来的92%:

plt.colorbar(shrink=.92)

plt.xticks(())
plt.yticks(())
plt.show()

这样我们2D图像就创建完毕了。

3_4_1.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虚坏叔叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值