11月12日下午,阿里巴巴多款应用崩了,从17:44分出现故障到19:20分恢复正常,耗时96分钟,故障原因可能与阿里云某个底层服务组件有关,整体损失不小。大家都在猜测今年阿里云整个集团绩效可能会被3.25了。
同作为底层的工程师,工作已十分不容易,遭此横祸,如果因此连坐,笔者深表同情和惋惜,还是希望自上而下能够明确责任,法不责众。当然各级对上线保持敬畏之心,建立完成的规范和制度,无论是与钱之前相关的广告业务线,还是间接相关的非广告业务线,都是需要有的。
言归正传,最近笔者看了两本关于程序化广告的书,一本是梁丽丽的《程序化广告:个性化精准投放实用手册》,另一本是吴俊的《程序化广告实战》,前者更偏向于从产品和业务的角度介绍程序化广告的内容,后者更偏向于技术细节和实践的角度介绍程序化广告实现上的内容。
我是第二遍看梁丽丽的《程序化广告:个性化精准投放实用手册》,发现上一次看忽略了每个公司的成立,实践上这是最有价值的部分,因为每个公司都有成立的动机和要解决的问题,其中蕴含着深刻的商业价值和行业变革机会,特别是当发现程序化交易市场居然细分到如此程度,比如PA(私有拍卖交易),PD(首选交易),PDB(程序化保量交易),HB(头部竞价),OPEN RTB等。
这些产品让我认识到产品提的“作妖”的需求有道理了。
(一)
最近广告产品遇到一些问题,关于混排的,被自然侧喷了。因为自然侧发现广告的展现占比控制在他们的要求范围内,但抢走了好的位置和好的流量,导致自然侧优化越来越难。而广告产品侧也十分苦恼,自然侧划定的红线指标就像紧箍咒一样,限制广告的后续规划和发展。
做广告的同学们应该都知道,根据收入拆解公示,广告收入=展现量 * 点击率 * 点击出价 * 计费比。对于产品侧而言,提展现量是最短平快的方法了,通过创意提点击率上限不确定性非常大,通过模型提高预估点击率准确性更是漫长,提点击出价需要广告授权,提计费比一来空间有限,二来影响广告ROI进而影响广告出价。
(二)
提展现量就意味着要向自然侧要更多的流量了。
不是所有公司都能够向PDD那样搞全站的。PDD的自然和广告同属一个团队,目标整齐化一,没有那么多撕扯,全部流量均可商业化,先把收入做上去,老板高兴,投资人也高兴,股价框框向上涨,至于未来,暂且不想。
对外PR说:广告主现在一键可以投放所有流量(搜索、推荐等多个场景),简化投放流程,只用关心投产比(ROI)是否达成。对内而言,在机制上,流量不再被人为切分,每个流量上所有广告主均可参竞,广告收入会增长。后续在拍卖理论中我们会介绍,多引入一个竞价者会比修改广告拍卖机制(如最优机制)带来的收入要多。在商业化扩展上,比如开放一些新的广告栏位,研发一些新的产品做商业化,甚至把广告预算花在联盟流量上等等,均不用告知广告主了。在广告产品设计上,可以对广告的创意、展现形式,计费方式等做各种变动了,也不需要广告主授权,变得十分方便了。
如果读者对《oCPC实践录》专栏还有印象的话,上面这段文字刚好就是oCPC对平台的意义。oCPC的三板斧:稳定成本吸引预算、智能扩量花掉预算、深度oCPC持续增长。
广告主初期可能是高兴的,通过全站可以争取到更多的流量了。对于不依赖广告的商家,比如有广泛品牌认知的商家,那就不好过了,当然对于PDD而言,本来也不是依赖品牌商家起量的。当更多的广告主参与到这个新游戏中,竞争变得激烈了,而这些正是平台机制设计者所期望了。
如果全部流量可以商业化,有读者就问了,平台的机制是不是也发生变化了?之前自然流量的排序分可能是eGMV= 预估点击率 * 预估成单率 * 预估成单价格(或者商品价格),广告侧的排序分可能是eGMV + W1 * eCPM, 其中W是eCPM的权重参数,广告侧设定,eCPM=预估点击率 * 预估转化率 * 给定转化成本。现在广告和自然的排序分统一为:eGMV + W2 * eCPM, 其中W2是eCPM的权重参数,平台设定,eCPM=预估点击率 * 预估成单率 * 预估成单率 * 预估成单价格(或者商品价格)/ 给定投产比。公式中的W2是平台平衡交易额和广告收入的关键因素,如果期望广告收入涨一些,就调大W2,反之就调低。
广告的计费机制可直接是一价,如果是CPS计费,那就是成单时才计费=预估成单价格(或者商品价格)/ 给定投产比,如果是CPC计费,那就是点击时才计费=预估成单率 * 预估成单价格(或者商品价格)/ 给定投产比,如果是CPM计费,那就是展现时才计费=eCPM
广告的计费机制也可以是二价,如果是CPM计费,那就是展现时才计费=(下一位eGMV + W2 * 下一位eCPM - 当前位eGMV) * 投产比控制因子;如果是CPC计费,那就是点击时才计费=(下一位eGMV + W2 * 下一位eCPM - 当前位eGMV) * 投产比控制因子 /当前广告预估点击率;如果是CPS计费,那就是成单时才计费=(下一位eGMV + W2 * 下一位eCPM - 当前位eGMV) * 投产比控制因子 /当前广告预估点击率 / 当前广告预估转化率。
笔者不厌其烦地写计费的公式,只是为了说明,不同的计费方式的区别,对平台侧而言收益在理论上都是等价的,在预估点击率和转化率准确的前提下,同时也是为了说明模型预估不能仅仅关注AUC,也要关注预估偏差。
当我们还在为深度oCPC双出价怎么做权衡的时候,PDD已经开始对多目标出价下手了,广告主可以针对成单投产比、收藏、加购物车、关注等目标进行出价,这个在机制上称之为多维机制(oCPC在广告主控制回传时也是多维机制),多维机制面临的一个问题是:一个流量有多个纬度进行价值衡量时,在竞价时使用哪个出价?
成单投产比对应的eCPM = 预估点击率 * 预估成单率 * 预估成单价格 / 设定投产比;收藏对应的eCPM=预估点击率 * 预估收藏率*收藏出价...PDD声称多目标出价可以获取更多流量,在这个声称的前提下,笔者大胆猜测用的是其中最大的eCPM出价。多维机制让广告主在竞价过程中有更多的选择,也带来更多的迷茫和不确定性,广告科学越来越趋向玄学。
笔者对PDD商业产品们是十分佩服的,产品设计干净利落,产品好坏交由市场验证。
(三)
对于一些公司而言,不是能够拿到全部流量的。与自然侧的撕扯可能是一个长期的事情了,如果拿不到更多的流量和广告展现占比,那么就需要另寻他法了。开头中产品侧就开始另辟蹊径,从提高流量变现价值角度思考问题了,他们提出一个“流量分层和整合”的概念,最开始他们提出来的时候,我感觉又在“作妖”了,后来才理解他们的初衷。
笔者在分析数据时,发现一个有意思的情况,就是部分CPT或CPM品牌广告位变现效率竟然远高于效果变现效率,还有一种情况。长期做效果广告让笔者忽视了有部分广告主是非常关注品牌效果的,也有广告主是非常关注优质流量的,并愿意为之付出数倍的溢价。
另外在分析竞价生态时,发现高GMV商家,有出低价的冲动,对应ROI较高,对这些商家需要考虑设计机制激励出价。(当然如果没有全站流量,广告侧的激励作用会变弱)。
这时候产品侧就开始发挥聪明才智了,对流量进行分层和优质流量整合,向广告主寻求更高的溢价,也许是个好思路。我错怪产品了,以后还是要向产品好好学习。