系列文章目录
`
一、stm32 FOC从零学习开发(一)FOC概念
二、stm32 FOC从学习开发(二)Clark变换与MATLAB仿真
三、stm32 FOC从学习开发(三)park变换与MATLAB仿真
四、stm32 FOC从学习开发(四)svpwm算法(1)
五、stm32 FOC从学习开发(五)svpwm算法(2)
六、stm32 FOC从学习开发(六)基于均值零序分量注入的载波SVPWM算法
七、stm32 FOC从学习开发(七)svpwm算法MATLAB仿真
八、stm32 FOC从学习开发(八)PID基础MATLAB仿真
九、stm32 FOC从学习开发(九)FOC MATLAB仿真
MATLAB仿真文件链接:https://download.csdn.net/download/bing_xin_/88279954
基于MATLAB 2018a版本,低于这个版本的请谨慎下载,高于这个版本的可以兼容。
一、分扇区计算SVPWM仿真模型
本仿真模型基于之前所做的Clark变换与park变换,输入量是α、β、时间周期T和电压U,由于实际硬件中采用的定时器是168M,所要PWM频率为20Khz,所以这里时间周期T设置为了8400,也是为了容易算出CMP比较值,电压就使用了我经常用的24V,其实这两个参数随便改就可以了如果只是为了看仿真效果的话,仿真中使用的是常数模块,改成自己想要的值就可以了。
下面是整体的仿真模型:
前面是Clark变换与park变换,后面两个SVPWM1是基于均值零序分量的,SVPWM2是分扇区计算的。使用的都是MATLAB Function模块,使用的是MATLAB的代码语言编写的函数。如果想直接用MATLAB simulink搭建也可以,我感觉比较麻烦,还是代码更熟悉一点。
分扇区计算的SVPWM程序:
function [N,X,Y,Z,T1,T2,Ta,Tb,Tc,CMP1,CMP2,CMP3] = SVPWM2(valpha,vbeta,T,udc)
if vbeta>0
A=1;
else
A=0;
end
if (sqrt(3)*valpha-vbeta)>0
B=1;
else
B=0;
end
if (-sqrt(3)*valpha-vbeta)>0
C=1;
else
C=0;
end
N=A+2*B+4*C;
X=T/udc*sqrt(3)*vbeta;
Y=T/udc/2*(3*valpha+sqrt(3)*vbeta);
Z=T/udc/2*(-3*valpha+sqrt(3)*vbeta);
T1=double(0);
T2=double(0);
switch N
case 1
T1=Z
T2=Y
case 2
T1=Y
T2=-X
case 3
T1=-Z
T2=X
case 4
T1=-X
T2=Z
case 5
T1=X
T2=-Y
case 6
T1=-Y
T2=-Z
end
Ta=(T-T1-T2)/4;
Tb=Ta+T1/2;
Tc=Tb+T2/2;
CMP1=double(0);
CMP2=double(0);
CMP3=double(0);
switch N
case 1
CMP1=Tb
CMP2=Ta
CMP3=Tc
case 2
CMP1=Ta
CMP2=Tc
CMP3=Tb
case 3
CMP1=Ta
CMP2=Tb
CMP3=Tc
case 4
CMP1=Tc
CMP2=Tb
CMP3=Ta
case 5
CMP1=Tc
CMP2=Ta
CMP3=Tb
case 6
CMP1=Tb
CMP2=Tc
CMP3=Ta
end
简单说明下,首先做的就是扇区判断,计算出N值,然后计算出比较时间T,最后计算出比较值,也就是马鞍波形。
二、分扇区计算SVPWM仿真结果
三、均值分量SVPWM仿真模型
仿真模型就是上图展示的一样,仿真代码相比于分扇区计算的就少太多了,实际就只有六行:
function [A_SVM,B_SVM,C_SVM,junzhi] = svpwm1(valpha,vbeta)
% double A B C;
A=(valpha);
B=((sqrt(3)*vbeta-valpha)/2);
C=((-sqrt(3)*vbeta-valpha)/2);
junzhi=(max(max(A,B),C)+min(min(A,B),C))/2;
A_SVM=-(A-(max(max(A,B),C)+min(min(A,B),C))/2);
B_SVM=-(B-(max(max(A,B),C)+min(min(A,B),C))/2);
C_SVM=-(C-(max(max(A,B),C)+min(min(A,B),C))/2);
中间那个junzhi只是为了方便理解加的。
四、均值分量SVPWM仿真结果
从仿真结果上焊也是形成了马鞍波的,只是范围是-1到1了,这个没关系,实际应用的时候进行幅值变换也就是了,也就是加上一个常数使其大于0,然后乘以一个常数即增益。
两种仿真结果对比:
从结果上看两种结果一模一样,所以要是使用硬件的话肯定基于均值分量的更简单一些,但是ST官方库里面还是使用扇区判断的方法。