交叉验证的应用

34 篇文章 2 订阅
6 篇文章 0 订阅

利用原本的数据集,记录交叉验证的各参数应用:

1、导入需要用到的库

from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor

2、进行交叉验证

boston = load_boston()
regressor = DecisionTreeRegressor(random_state=0)
# 第一个参数是指实例化后算法模型,第二个参数是指未划分测试集和训练集的完整特征矩阵
# 第三个参数是指未划分测试集和训练集的完整标签矩阵,第四个参数是指交叉验证要划分的份数
# 第五个参数是指交叉验证要用的结果,作为衡量指标来评估模型,默认时用R方来进行评估
cross_val_score(regressor, boston.data, boston.target, cv=10, 
                scoring = "neg_mean_squared_error") 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值