利用原本的数据集,记录交叉验证的各参数应用:
1、导入需要用到的库
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
2、进行交叉验证
boston = load_boston()
regressor = DecisionTreeRegressor(random_state=0)
# 第一个参数是指实例化后算法模型,第二个参数是指未划分测试集和训练集的完整特征矩阵
# 第三个参数是指未划分测试集和训练集的完整标签矩阵,第四个参数是指交叉验证要划分的份数
# 第五个参数是指交叉验证要用的结果,作为衡量指标来评估模型,默认时用R方来进行评估
cross_val_score(regressor, boston.data, boston.target, cv=10,
scoring = "neg_mean_squared_error")