异常处理

在python程序执行过程中(在其他编程语言中也是一样),难免会由于各种意想不到的情况导致程序运行异常而报错。而这个时候就需要通过使用异常处理来对运行过程中出现的异常进行处理。 try … except … try … except … 是异常处理中基本的模式。在正常的执行一段代码的过程中,当...

2018-12-30 09:43:48

阅读数 13

评论数 0

IRT模型学习小结

IRT模型学习小结 关于IRT模型 与IRT模型相对应的经典测量理论CCT。经典测量理论与项目反应理论在测量领域均占有重要地位。经典测量理论形成较早,但是经典测量理论却有一些难以克服的缺点: 能力与观测分数之间的线性关系假设不合理。 在经典测量理论中认为被试的能力与测试得到的分数是线性...

2018-12-09 20:29:46

阅读数 265

评论数 0

受限玻尔兹曼机与深度信念网络

1 受限玻尔兹曼机(RBM) 1.1 RBM的结构 RBM是无监督学习模型,有两个层的浅层神经网络,一个可见层,一个隐藏层,是一种用于降维、分类、回归、协同过滤、特征学习和主题建模的算法,它是组成深度置信网络的基础部件。 RBM的结构如下所示: 图1 &a...

2018-03-05 11:02:00

阅读数 1010

评论数 1

批归一化Batch Normalization学习笔记

1 Batch Normalization(BN)的作用 1.1 特征分布对神经网络训练的作用 在神经网络的训练过程中,我们一般会将输入样本特征进行归一化处理,使数据变为均值为0,标准差为1的分布或者范围在0~1的分布。因为当我们没有将数据进行归一化的话,由于样本特征分布较散,可能会导致神经网...

2018-02-27 22:14:53

阅读数 2699

评论数 0

对抗生成网络(GAN)学习笔记

生成模型与判别模型 判别模型:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。 生成模型:由数据学习联合概率分布P(X,Y), 然后由P(Y|X)=P(X,Y)/P(X)求出概率分布P(Y|X)作为...

2018-02-26 13:51:01

阅读数 800

评论数 0

机器学习之损失函数学习总结

经验风险最小化与结构风险最小化 经验风险最小化 经验风险最小化模型如下: min1N∑i=1NL(yi,f(xi))" role="presentation">min1N∑i=1NL(yi,f(xi))min1N∑i=1NL(yi...

2018-01-31 16:12:38

阅读数 144

评论数 0

机器学习之优化算法学习总结

优化算法演化历程 机器学习和深度学习中使用到的优化算法的演化历程如下: SGD –> Momentum –> Nesterov –> Adagrad –> Adadelta –> Adam –> Nadam 表1 &...

2018-01-29 20:45:14

阅读数 629

评论数 0

梯度下降法学习笔记

1 相关概念梯度——表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快。对于一元函数y=f(x),其梯度为∂y∂x,对于二元函数f(x,y),其梯度为(∂f∂x,∂f∂y)y=f(x),其梯度为\frac{\partial y}{\partial ...

2017-11-18 21:56:40

阅读数 219

评论数 0

语音识别的技术路线学习笔记

0 语音识别技术路线大致框图如上图所示,语音识别的大致过程可以分为以下几步: 1、语音输入——这个过程可以通过电脑上的声卡来获取麦克风中输入的音频信号,或者直接读取电脑中已经存在的音频文件; 2、音频信号特征提取——在得到音频信号之后,需要对音频信号进行预处理,然后对预处理之后的音频信号进程特...

2017-10-27 00:56:13

阅读数 2321

评论数 0

模式识别——聚类分析 学习笔记

聚类分析相关概念聚类分析——对一批没有标出类别的模式样本集,按照样本之间的相似程度分类,相似的归为一类,不相似的归为另一类 聚类中,将样本根据相似程度进行分类,这个相似程度就是用样本特征之间的相似程度。把整个模式样本集的特征向量看成是分布在特征空间中的一些点,点与点之间的距离即可作为模式相似性的...

2017-10-26 16:59:56

阅读数 691

评论数 0

凸优化相关概念学习笔记

前言 由于凸优化具有一些很好的性质,比如: 凸问题中的局部最优解就是全局最优解 凸优化理论中的拉格朗日对偶为凸优化算法的最优性与有效性提供了保证 并且,在机器学习中的很多模型在先辈们的研究下,正好符合凸优化模型。在大多数优化问题中,只要转化为凸问题,那么基本上是可以解决的。 凸优化问题...

2017-10-06 17:47:11

阅读数 459

评论数 1

奇异值分解(SVD)学习笔记

在机器学习或数据分析中,有时样本数据会比较大,这样对计算机的内存会有很大的负担。此时,通过一些方法来提取数据中的主要成分,而忽略其中可以忽略不计的成分,将大大减少计算量。本文讲简单介绍奇异值分解(SVD)方法。

2017-09-30 15:51:00

阅读数 211

评论数 0

提示
确定要删除当前文章?
取消 删除