受限玻尔兹曼机与深度信念网络

1 受限玻尔兹曼机(RBM) 1.1 RBM的结构 RBM是无监督学习模型,有两个层的浅层神经网络,一个可见层,一个隐藏层,是一种用于降维、分类、回归、协同过滤、特征学习和主题建模的算法,它是组成深度置信网络的基础部件。 RBM的结构如下所示: 图1 &a...

2018-03-05 11:02:00

阅读数 1470

评论数 1

批归一化Batch Normalization学习笔记

1 Batch Normalization(BN)的作用 1.1 特征分布对神经网络训练的作用 在神经网络的训练过程中,我们一般会将输入样本特征进行归一化处理,使数据变为均值为0,标准差为1的分布或者范围在0~1的分布。因为当我们没有将数据进行归一化的话,由于样本特征分布较散,可能会导致神经网...

2018-02-27 22:14:53

阅读数 5117

评论数 0

对抗生成网络(GAN)学习笔记

生成模型与判别模型 判别模型:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。 生成模型:由数据学习联合概率分布P(X,Y), 然后由P(Y|X)=P(X,Y)/P(X)求出概率分布P(Y|X)作为...

2018-02-26 13:51:01

阅读数 861

评论数 0

提示
确定要删除当前文章?
取消 删除