深度神经网络(一):什么是神经网络

本文深入浅出地介绍了神经网络的仿生学原理和数学模型,从单层感知机到多层感知机,阐述了神经元、激活函数在神经网络中的角色。并强调了激活函数在赋予神经网络非线性特性中的关键作用,为后续的深度学习概念奠定了基础。
摘要由CSDN通过智能技术生成

一:神经网络的仿生学原理

神经网络其实是根据我们人类大脑里的神经网络设计的“仿生产品”。我们知道,我们人脑的最小组成单元是神经元,如下图所示,神经元由树突、细胞体和轴突组成。计算机中的神经网络与之人脑的神经网络类似,也是由一个个神经元(也叫做感知机)组成的。

根据高中生物的知识,神经元的功能可分为三种,一是接收信息:树突通过突触与上一级神经元相连,接受上一级神经元传递的刺激信号;二是处理信息:细胞体根据这些刺激信号决定是否刺激下一级神经元,三是输出信息:通过轴突传递信号至突触,刺激或者抑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值