bitcarmanlee的博客

米厂的小码农,专注数据与算法,qq群:397173819

稀疏矩阵之python实现

工程实践中,多数情况下,大矩阵一般都为稀疏矩阵,所以如何处理稀疏矩阵在实际中就非常重要。本文以python里中的实现为例,首先来探讨一下稀疏矩阵是如何存储表示的。1.sparse模块初探python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其...

2016-09-26 11:13:53

阅读数:20265

评论数:0

矩阵的一些常用结论

矩阵有时候有一些常用的结论与性质,如果有一段时间不接触或者实际中没使用到,很容易就会遗忘。因此,特意做一个小小的总结,方便使用与查询。1.矩阵AA的全部特征值的集合通常被称为AA的谱。 2.|A|=λ1λ2⋯λn|A| = \lambda_1\lambda_2\cdots\lambda_n,或者...

2016-09-25 17:29:56

阅读数:1793

评论数:0

常见的几种矩阵分解方式

1.三角分解(LU分解)矩阵的LU分解是将一个矩阵分解为一个下三角矩阵与上三角矩阵的乘积。本质上,LU分解是高斯消元的一种表达方式。首先,对矩阵A通过初等行变换将其变为一个上三角矩阵。对于学习过线性代数的同学来说,这个过程应该很熟悉,线性代数考试中求行列式求逆一般都是通过这种方式来求解。然后,将原...

2016-09-25 15:54:23

阅读数:40832

评论数:0

SVD 详解 与 spark实战

1.前言一般提到特征值分解(eigenvalue decomposition)或者奇异值分解(singular value decomposition),大多数同学脑海里的第一反应就是一大堆矩阵以及数学计算方法。确实,学校学习阶段,不管是学线性代数或者矩阵分析,对于这部分内容,或者说绝大部分内容,...

2016-07-29 19:47:59

阅读数:12568

评论数:1

理解矩阵

注:很经典的文章,写得通俗易懂,解释了一些平时不太关注但是突然问你一时半会还真答不上的问题。接着理解矩阵。上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总...

2016-07-29 19:24:03

阅读数:1728

评论数:1

向量范数与矩阵范数

1.范数(norm)的意义要更好的理解范数,就要从函数、几何与矩阵的角度去理解。 我们都知道,函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。 但当函数与几何超出三维空...

2016-07-18 20:35:26

阅读数:29330

评论数:3

python numpy模块玩转矩阵与科学计算

学生时代玩矩阵最爽的工具自然是matlab了。而且matlab天生就是为科学计算,为矩阵而生。matlab的一切对象皆可看成矩阵,最简单的一个整数,也是个1*1的矩阵。但是在公司里面以后,matlab就玩不转了。道理很简单,matlab虽然好用,但是正版软件非常贵。而且,matlab是闭源,跟现在...

2016-05-10 22:31:01

阅读数:11153

评论数:1

稀疏向量计算优化小结

在各种算法中,向量计算是最常用的一种操作之一。传统的向量计算,学过中学数学的同学也能明白怎么做。但在现在的大数据环境下,数据一般都会比较稀疏,因此稀疏向量的计算,跟普通向量计算,还是存在一些不同。首先,我们定义两个向量:

2016-04-21 21:56:28

阅读数:2850

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭