矩阵的一些常用结论

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

矩阵有时候有一些常用的结论与性质,如果有一段时间不接触或者实际中没使用到,很容易就会遗忘。因此,特意做一个小小的总结,方便使用与查询。

1.矩阵 A A A的全部特征值的集合通常被称为 A A A的谱。
2. ∣ A ∣ = λ 1 λ 2 ⋯ λ n |A| = \lambda_1\lambda_2\cdots\lambda_n A=λ1λ2λn,或者时候 A A A的行列式为所有特征值的乘积。
3. ∑ i = 1 n a i i = ∑ i = 1 n λ i \sum_{i=1}^{n}a_{ii} = \sum_{i=1}^n \lambda_i i=1naii=i=1nλi

矩阵 A A A的主对角线上的所有元素和 ∑ i = 1 n a i i \sum_{i=1}^{n}a_{ii} i=1naii被称为矩阵的迹,记为 t r A trA trA。于是,上面的第3条又可以记为:

4. t r A = ∑ i = 1 n λ i trA = \sum_{i=1}^n \lambda_i trA=i=1nλi
5.矩阵 A A A A T A^T AT有相同的谱。
6.如果 A A A B B B是两个n阶矩阵,若存在n阶可逆矩阵 P P P P − 1 A P = B P^{-1}AP = B P1AP=B,则成 A A A B B B相似,记为 A ∼ B A \sim B AB P P P A A A B B B的相似变换矩阵。
7.如果 A ∼ B A \sim B AB,则:
∣ λ I − B ∣ = ∣ λ I − P − 1 A P ∣ = ∣ P − 1 ( λ I − A ) P ∣ = ∣ λ I − A ∣ |\lambda I - B| = |\lambda I - P^{-1}AP| = |P^{-1}(\lambda I - A) P| = |\lambda I - A| λIB=λIP1AP=P1(λIA)P=λIA
由上易知,如果 A ∼ B A \sim B AB,则矩阵 A A A B B B有相同的谱。
8.n阶方阵 A A A可以相似对角化的充要条件是 A A A有n个线性无关的特征向量。

9. A A A为n阶方阵, A A A的特征多项式为:
d e t ( λ I − A ) = ( λ − λ 1 ) m 1 ( λ − λ 2 ) m 2 ⋯ ( λ − λ s ) m s det(\lambda I - A) = (\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2}\cdots(\lambda - \lambda_s)^{m_s} det(λIA)=(λλ1)m1(λλ2)m2(λλs)ms
其中, m i m_i mi均为正整数, ∑ i = 1 s = n \sum_{i=1}^{s} = n i=1s=n λ 1 , λ 2 , ⋯   , λ s \lambda_1,\lambda_2,\cdots,\lambda_s λ1,λ2,,λs A A A的不同特征值, m i m_i mi为特征值 λ i \lambda_i λi的代数重数记为 p i p_i pi。特征值 λ i \lambda_i λi对应的全部特征向量正好是特征方程组 ( λ i I − A ) X = 0 (\lambda_i I - A)X = 0 (λiIA)X=0的全部非0解。因此, A A A属于特征值 λ i \lambda_i λi的线性无关的特征向量最多有 n − r ( λ i I − A ) n-r(\lambda_i I - A) nr(λiIA)个,这个数也就是特征方程组 ( λ i I − A ) X = 0 (\lambda_i I - A)X = 0 (λiIA)X=0的一组基础解系中所含有解向量的个数,即解空间的位数,被称为特征值 λ i \lambda_i λi的几何重数,记为 q i q_i qi

10.设 λ 1 , λ 2 , ⋯   , λ s \lambda_1,\lambda_2,\cdots,\lambda_s λ1,λ2,,λs A A A的全部互异的特征值, p i p_i pi q i q_i qi分别为特征值 λ i \lambda_i λi的代数重数与几何重数, i = 1 , 2 , ⋯   , s i=1,2,\cdots,s i=1,2,,s。则矩阵 A A A可以相似对角化的虫咬条件是:
p i = q i , i = 1 , 2 , ⋯   , s p_i = q_i, i=1,2,\cdots,s pi=qi,i=1,2,,s

11.实对称矩阵属于不同特征值的特征向量是正交的。
12. λ 0 \lambda_0 λ0是n阶实堆成矩阵 A A A的任一特征值,p,q分别为它的代数重数与几何重数,有 p = q p=q p=q
13.由前面一条结论可知,对任一n阶实对称矩阵 A A A,存在n阶正交矩阵 Q Q Q,有
Q − 1 A Q = d i a g ( λ 1 , λ 2 , ⋯   , λ s ) Q^{-1}AQ = diag(\lambda_1,\lambda_2,\cdots,\lambda_s) Q1AQ=diag(λ1,λ2,,λs)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值