FM算法详解

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

1.FM背景

在计算广告中,CTR预估(click-through rate)是非常重要的一个环节,因为DSP后面的出价要依赖于CTR预估的结果。在前面的相关博文中,我们已经提到了CTR中相关特征工程的做法。对于特征组合来说,业界现在通用的做法主要有两大类:FM系列与Tree系列。今天,我们就来讲讲FM算法。

2.one-hote编码带来的问题

FM(Factorization Machine)主要是为了解决数据稀疏的情况下,特征怎样组合的问题。已一个广告分类的问题为例,根据用户与广告位的一些特征,来预测用户是否会点击广告。数据如下:(本例来自美团技术团队分享的paper)
这里写图片描述
clicked是分类值,表明用户有没有点击该广告。1表示点击,0表示未点击。而country,day,ad_type则是对应的特征。前面我们在http://blog.csdn.net/bitcarmanlee/article/details/51472816一文中专门提到过,对于这种categorical特征,一般都是进行one-hot编码处理。

将上面的数据进行one-hot编码以后,就变成了下面这样
这里写图片描述

因为是categorical特征,所以经过one-hot编码以后,不可避免的样本的数据就变得很稀疏。举个非常简单的例子,假设淘宝或者京东上的item为100万,如果对item这个维度进行one-hot编码,光这一个维度数据的稀疏度就是百万分之一。由此可见,数据的稀疏性,是我们在实际应用场景中面临的一个非常常见的挑战与问题。

one-hot编码带来的另一个问题是特征空间变大。同样以上面淘宝上的item为例,将item进行one-hot编码以后,样本空间有一个categorical变为了百万维的数值特征,特征空间一下子暴增一百万。所以大厂动不动上亿维度,就是这么来的。

3.对特征进行组合

普通的线性模型,我们都是将各个特征独立考虑的,并没有考虑到特征与特征之间的相互关系。但实际上,大量的特征之间是有关联的。最简单的以电商为例,一般女性用户看化妆品服装之类的广告比较多,而男性更青睐各种球类装备。那很明显,女性这个特征与化妆品类服装类商品有很大的关联性,男性这个特征与球类装备的关联性更为密切。如果我们能将这些有关联的特征找出来,显然是很有意义的。

一般的线性模型为:
y = ω 0 + ∑ i = 1 n ω i x i y = \omega_0 + \sum_{i=1}^{n} \omega_i x_i y=ω0+i=1nωixi

从上面的式子很容易看出,一般的线性模型压根没有考虑特征间的关联。为了表述特征间的相关性,我们采用多项式模型。在多项式模型中,特征 x i x_i xi x j x_j xj的组合用 x i x j 表 示 x_ix_j表示 xixj。为了简单起见,我们讨论二阶多项式模型。具体的模型表达式如下:

y = ω 0 + ∑ i = 1 n ω i x i + ∑ i = 1 n − 1 ∑ j = i + 1 n ω i j x i x j y = \omega_0 + \sum_{i=1}^{n} \omega_i x_i + \sum_{i=1}^{n-1}\sum_{j=i+1}^{n} \omega_{ij}x_ix_j y=ω0+i=1nωixi+i=1n1j=i+1nωijxixj

上式中, n n n表示样本的特征数量, x i x_i xi表示第 i i i个特征。
与线性模型相比,FM的模型就多了后面特征组合的部分。

4.FM求解

从上面的式子可以很容易看出,组合部分的特征相关参数共有 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)个。但是如第二部分所分析,在数据很稀疏的情况下,满足 x i x_i xi, x j x_j xj都不为0的情况非常少,这样将导致 ω i j \omega_{ij} ωij无法通过训练得出。

为了求出 ω i j \omega_{ij} ωij,我们对每一个特征分量 x i x_i xi引入辅助向量 V i = ( v i 1 , v i 2 , ⋯   , v i k ) V_i=(v_{i1},v_{i2},\cdots,v_{ik}) Vi=(vi1,vi2,,vik)。然后,利用 v i v j T v_iv_j^T vivjT ω i j \omega_{ij} ωij进行求解。

这里写图片描述

那么 ω i j \omega_{ij} ωij组成的矩阵可以表示为:
这里写图片描述
上面的表达形式,就对应了一种矩阵的分解。对 k k k值的限定,就反应了FM模型的表达能力。

要求出 < v i , v j > <v_i,v_j> <vi,vj>,主要是采用了如公式 ( ( a + b + c ) 2 − a 2 − b 2 − c 2 ((a+b+c)^2-a^2-b^2-c^2 ((a+b+c)2a2b2c2求出交叉项。具体过程如下:这里写图片描述

  • 35
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
FM因子分解机)是一种经典的推荐算法,它可以用于处理稀疏数据并且具有较好的预测性能。下面是使用PyTorch实现FM算法的基本步骤: 1. 导入需要的库: ```python import torch import torch.nn as nn import torch.optim as optim ``` 2. 定义FM模型 ```python class FM(nn.Module): def __init__(self, input_dim, k): super(FM, self).__init__() self.k = k self.linear = nn.Linear(input_dim, 1) self.v = nn.Parameter(torch.randn(input_dim, k)) def forward(self, x): linear_part = self.linear(x) inter_part1 = torch.matmul(x, self.v) inter_part2 = torch.matmul(torch.pow(x, 2), torch.pow(self.v, 2)) inter_part = 0.5 * torch.sum(torch.sub(inter_part1, inter_part2), 1, keepdim=True) output = linear_part + inter_part return output ``` 3. 定义训练函数 ```python def train(model, dataloader, optimizer, criterion): model.train() train_loss = 0 for batch_idx, (data, target) in enumerate(dataloader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) train_loss += loss.item() loss.backward() optimizer.step() return train_loss / len(dataloader.dataset) ``` 4. 定义测试函数 ```python def test(model, dataloader, criterion): model.eval() test_loss = 0 with torch.no_grad(): for data, target in dataloader: output = model(data) test_loss += criterion(output, target).item() return test_loss / len(dataloader.dataset) ``` 5. 加载数据集和设置超参数 ```python from torch.utils.data import DataLoader, Dataset class CustomDataset(Dataset): def __init__(self, x, y): self.x = x self.y = y def __getitem__(self, index): return self.x[index], self.y[index] def __len__(self): return len(self.x) X_train, y_train = ... X_test, y_test = ... train_dataset = CustomDataset(X_train, y_train) test_dataset = CustomDataset(X_test, y_test) batch_size = 64 train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) input_dim = X_train.shape[1] k = 10 lr = 0.01 num_epochs = 50 ``` 6. 训练模型 ```python model = FM(input_dim, k) optimizer = optim.SGD(model.parameters(), lr=lr) criterion = nn.MSELoss() for epoch in range(num_epochs): train_loss = train(model, train_dataloader, optimizer, criterion) test_loss = test(model, test_dataloader, criterion) print(f'Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}') ``` 这样就可以使用PyTorch实现FM算法了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值