齐次坐标系

本文转载自技术博客, 如需获取更多相关信息请参见原文。

齐次坐标系

假设在欧式平面上我们有一个点 ( x , y ) (x,y) (x,y)。如果我们想在投影平面上表示这个点,我们仅需要在末尾为其添加第三个坐标1: ( x , y , 1 ) (x,y,1) (x,y,1)。总体而言缩放并不重要,因此点 ( x , y , 1 ) (x,y,1) (x,y,1) ( α x , α y , α ) (\alpha x, \alpha y, \alpha) (αx,αy,α)对于所有 α \alpha α不为零的情况都表示同一个点。换句话说,
( X , Y , W ) = ( α X , α Y , α W ) (X, Y, W) = (\alpha X, \alpha Y, \alpha W) (X,Y,W)=(αX,αY,αW)
任何情况下 α ≠ 0 \alpha \neq 0 α=0(因此点 ( 0 , 0 , 0 ) (0, 0, 0) (0,0,0)是不存在的)。由于缩放不重要,坐标点 ( X , Y , W ) (X, Y, W) (X,Y,W)被称为齐次坐标系上的点。在本次讨论中,我们使用大写字母来表示齐次坐标系下的点,同时本文中齐次坐标表达 ( X , Y , W ) (X, Y, W) (X,Y,W)同向量表达 [ X , Y , W ] T [X, Y, W]^T [X,Y,W]T可互换使用。

为表示映射平面中的一条线,我们从线的标准欧拉公式开始:
a x + b y + c = 0 , ax + by + c = 0, ax+by+c=0,
根据方程不受缩放影响这一特性,可得出以下公式:
a X + b Y + c W = 0 u T p = p T u = 0 \begin{aligned} &aX + bY + cW = 0\\ &u^Tp = p^Tu = 0 \end{aligned} aX+bY+cW=0uTp=pTu=0
此处 u = [ a , b , c ] T u = [a, b, c]^T u=[a,b,c]T表示线且 p = [ X , Y , W ] T p=[X,Y,W]^T p=[X,Y,W]T表示线上的点。因此我们看到点和线在映射平面上具有相同的表达。线的参数也非常易于理解: − a b -\frac{a}{b} ba表示斜率, − c a -\frac{c}{a} ac表示X轴的截距, − f r a c c b -frac{c}{b} fraccb表示Y轴的截距。

将映射平面上的点转换回欧式空间,我们仅需要除以第三个维度: ( x , y ) = ( X W , Y W ) (x,y) = (\frac{X}{W}, \frac{Y}{W}) (x,y)=(WX,WY)。我们可以很清楚的看到映射平面拥有比欧式空间更多的点——那就是第三个维度为0的点。这些点被称为理想点或无穷远点。在平面的任何一个方向上都有一个单独的理想点。例如点 ( 1 , 0 , 0 ) (1,0,0) (1,0,0)和点 ( 0 , 1 , 0 ) (0,1,0) (0,1,0)分别表示水平和垂直方向。理想点和 P 2 P^2 P2中的其它点一样并未做任何特殊处理。所有理想点所处的线被称为理想线或无穷远线,同样理想线也同普通线没有区别。理想线可表示为 ( 0 , 0 , 1 ) (0,0,1) (0,0,1)

假设我们希望找到两条线的交线。通过初等代数的知识,两条线 u 1 = ( a 1 , b 1 , c 1 ) u_1 = (a_1,b_1,c_1) u1=(a1,b1,c1) u 2 = ( a 2 , b 2 , c 2 ) u_2 = (a_2, b_2, c_2) u2=(a2,b2,c2)会相交于点 p = ( b 1 c 2 − b 2 c 1 , a 2 c 1 − a 1 c 2 , a 1 b 2 − a 2 b 1 ) . p = (b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, a_1b_2 - a_2b_1). p=(b1c2b2c1,a2c1a1c2,a1b2a2b1).这个公式用叉乘计算更容易记忆: p = u 1 × u 2 p = u_1 \times u_2 p=u1×u2。如果两条线是平行的,则有 a 1 b 1 = a 2 b 2 \frac{a_1}{b_1} = \frac{a_2}{b_2} b1a1=b2a2,此时交点为 ( b 1 c 2 − b 2 c 1 , a 2 c 1 − a 1 c 2 , 0 ) (b_1c_2 - b_2c_1, a_2c_1 - a_1c_2, 0) (b1c2b2c1,a2c1a1c2,0),这是一个理想点且线的斜率为 − a 1 b 1 -\frac{a_1}{b_1} b1a1。相似地,给定两个点 p 1 p_1 p1 p 2 p_2 p2,穿过这两个点的线方程可由 u = p 1 × p 2 u = p_1 \times p2 u=p1×p2获取。

现在假设我们想计算 p 1 , p 2 , p 3 p_1, p_2, p_3 p1,p2,p3这三个点是否共线。先有前两个点计算传过它们的线 p 1 × p 2 p_1 \times p_2 p1×p2。然后再计算第三个点是否在线上即 p 3 T ( p 1 × p 2 ) = 0 p_3^T(p_1 \times p_2) = 0 p3T(p1×p2)=0。或者另一种更简洁的方式是计算包含三个点的 3 × 3 3 \times 3 3×3矩阵的行列式是否为零:
d e t [ p 1 p 2 p 3 ] = 0. det[p_1 \quad p_2 \quad p_3] = 0. det[p1p2p3]=0.
相似地三条线 u 1 , u 2 , u 3 u_1,u_2,u_3 u1,u2,u3是否相交于同一点,可由下式判定:
d e t [ u 1 u 2 u 3 ] = 0. det[u_1 \quad u_2 \quad u_3] = 0. det[u1u2u3]=0.
齐次坐标系的概念已经在图2中总结了。进一步阅读可参阅Guibas的日志[3].
在这里插入图片描述
例一,给定两条线 u 1 = ( 4 , 2 , 2 ) u_1 = (4,2,2) u1=(4,2,2) u 2 = ( 6 , 5 , 1 ) u_2 = (6,5,1) u2=(6,5,1),它们的交点可如下计算出:
在这里插入图片描述
例2,计算一个双曲线 x y = 1 xy = 1 xy=1与水平线 y = 1 y = 1 y=1的交点。

为将其转换入齐次坐标系,设 X = W x X = Wx X=Wx Y = W y Y = Wy Y=Wy
可得 X Y = W 2 XY = W^2 XY=W2的双曲线和 Y = W Y=W Y=W的水平线。
这个方程的解为 ( W , W , W ) (W,W,W) (W,W,W),同欧式空间中的点 ( 1 , 1 ) (1,1) (1,1)表示的是同一个点就是我们想要的解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值