1. 协方差矩阵
X
,
Y
X,Y
X,Y是两个随机变量,
X
,
Y
X,Y
X,Y的协方差
C
o
v
(
X
,
Y
)
Cov(X,Y)
Cov(X,Y)定义为:
c
o
v
(
X
,
Y
)
=
E
[
(
X
−
μ
x
)
(
Y
−
μ
y
)
]
cov(X,Y) = E[(X-\mu_x)(Y-\mu_y)]
cov(X,Y)=E[(X−μx)(Y−μy)]
其中:
E
(
X
)
=
μ
x
,
E
(
Y
)
=
μ
y
E(X)=\mu_x,E(Y)=\mu_y
E(X)=μx,E(Y)=μy
2.协方差矩阵定义
矩阵中的数据按行排列和按列排列求出的协方差矩阵是不同的,这里默认数据是按行排列。即每一行是一个observation(样本),那么每一列就是一个随机变量(特征)。
X
m
×
n
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
]
=
[
c
1
c
2
⋯
c
n
]
X_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} \quad = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \quad
Xm×n=⎣⎢⎢⎢⎡a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎦⎥⎥⎥⎤=[c1c2⋯cn]
协方差矩阵:
c
o
v
M
a
t
r
i
x
=
1
m
−
1
[
c
o
v
(
c
1
,
c
1
)
c
o
v
(
c
1
,
c
2
)
⋯
c
o
v
(
c
1
,
c
n
)
c
o
v
(
c
2
,
c
1
)
c
o
v
(
c
2
,
c
2
)
⋯
c
o
v
(
c
2
,
c
n
)
⋮
⋮
⋱
⋮
c
o
v
(
c
n
,
c
1
)
c
o
v
(
c
n
,
c
2
)
⋯
c
o
v
(
c
n
,
c
n
)
]
covMatrix = \frac{1}{m-1} \begin{bmatrix} cov(c_1, c_1) & cov(c_1, c_2) & \cdots & cov(c_1, c_n) \\ cov(c_2, c_1) & cov(c_2, c_2) & \cdots & cov(c_2, c_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(c_n, c_1) & cov(c_n, c_2) & \cdots & cov(c_n, c_n) \\ \end{bmatrix} \quad
covMatrix=m−11⎣⎢⎢⎢⎡cov(c1,c1)cov(c2,c1)⋮cov(cn,c1)cov(c1,c2)cov(c2,c2)⋮cov(cn,c2)⋯⋯⋱⋯cov(c1,cn)cov(c2,cn)⋮cov(cn,cn)⎦⎥⎥⎥⎤
协方差矩阵的维度等于随机变量的个数,即每一个observation的维度。在某些场合前边也会出现
1
m
\frac{1}{m}
m1,而不是
1
m
−
1
\frac{1}{m-1}
m−11。
3.求解协方差矩阵的步骤
举个例子,矩阵X按行排列:
X
=
[
1
2
3
3
1
1
]
=
[
c
1
c
2
c
3
]
X = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 1\\ \end{bmatrix} \quad = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \quad
X=[132131]=[c1c2c3]
1.求每个维度的平均值
c
ˉ
=
[
2
1.5
2
]
=
[
c
1
ˉ
c
2
ˉ
c
3
ˉ
]
\bar{c} = \begin{bmatrix} 2 & 1.5 & 2 \end{bmatrix} \quad = \begin{bmatrix} \bar{c_1} & \bar{c_2} & \bar{c_3} \end{bmatrix} \quad
cˉ=[21.52]=[c1ˉc2ˉc3ˉ]
2.将X的每一列减去平均值
X
=
[
−
1
0.5
1
1
−
0.5
−
1
]
X = \begin{bmatrix} -1 & 0.5 & 1 \\ 1 & -0.5 & -1\\ \end{bmatrix} \quad
X=[−110.5−0.51−1]
其中:
c
i
=
c
i
−
c
i
ˉ
c_i = c_i - \bar{c_i}
ci=ci−ciˉ
3.计算协方差矩阵
c
o
v
=
1
m
−
1
X
T
X
=
1
2
−
1
[
2
−
1
−
2
−
1
0.5
1
−
2
1
2
]
cov = \frac{1}{m-1}X^TX = \frac{1}{2-1} \begin{bmatrix} 2 & -1 & -2 \\ -1 & 0.5 & 1 \\ -2 & 1 & 2 \\ \end{bmatrix} \quad
cov=m−11XTX=2−11⎣⎡2−1−2−10.51−212⎦⎤