BERT简化版源码,可以直接跑的那种

import jieba
import torch
import math
import numpy as np

from collections import Counter
from torch.utils.data import DataLoader
from random import randrange, shuffle, random, randint
from torch import nn
from torch import optim

SAMPLE_COUNT = 40
PRED_MAX = 5
PAD_LEN = 60
BATCH_SIZE = 4
HIDDEN_DIM = 100
HEAD_COUNT = 8
HEAD_DIM = 8
BLOCK_COUNT = 6
EPOCHS = 100

text = [
    'Hello, how are you? I am Romeo.',
    'Hello, Romeo My name is Juliet. Nice to meet you.',
    'Nice meet you too. How are you today?',
    'Great. My baseball team won the competition.',
    'Oh Congratulations, Juliet',
    'Thank you Romeo.',
    'Where are you going today?',
    'I am going shopping. What about you?',
    'I am going to visit my grandmother. she is not very well.'
]


def space(array):
    return [x for x in array if x != ' ']


""" 构建词典 """

paragraph = ' '.join(text)
counter = Counter(space(jieba.lcut(paragraph))).most_common()

word2id, id2word = dict(), dict()
word2id['_cls_'] = 0
word2id['_sep_'] = 1
word2id['_mask_'] = 2
word2id['_pad_'] = 3
for i, (w, freq) in enumerate(counter):
    word2id[w] = i + 4
for key, value in word2id.items():
    id2word[value] = key

""" 构建数据集 """

ids = list()
for t in text:
    ids.append([word2id[w] for w in space(jieba.lcut(t))])

dataset = list()
positive = negative = 0
while not(positive == SAMPLE_COUNT/2 and negative == SAMPLE_COUNT/2):
    idx_up, idx_down = randrange(len(text)), randrange(len(text))
    ids_up, ids_down = ids[idx_up], ids[idx_down]

    insert = {'word': [word2id['_cls_']] + ids_up + [word2id['_sep_']] + ids_down + [word2id['_sep_']],
              'segment': [0] * (1 + len(ids_up) + 1) + [1] * (len(ids_down) + 1),
              'position': list(range(PAD_LEN))}

    """ 掩码 """
    pred_count = min(PRED_MAX, max(1, int(len(insert['word']) * 0.15)))
    idx_maskable = [idx for idx, ids in enumerate(insert['word'])
                    if ids != word2id['_cls_'] and ids != word2id['_sep_']]
    shuffle(idx_maskable)
    ids_masked, idx_masked = list(), list()
    for idx in idx_maskable[:pred_count]:
        idx_masked.append(idx)
        ids_masked.append(insert['word'][idx])
        if random() < 0.8:
            insert['word'][idx] = word2id['_mask_']
        elif random() > 0.9:
            ids_rand = randint(0, len(word2id) - 1)
            while ids_rand < 4:
                ids_rand = randint(0, len(word2id) - 1)
            insert['word'][idx] = ids_rand

    """ 矩阵化 """
    if PRED_MAX > pred_count:
        pad_count = PRED_MAX - pred_count
        idx_masked.extend([0] * pad_count)
        ids_masked.extend([0] * pad_count)

    """ 填充 """
    pad_count = PAD_LEN - len(insert['word'])
    if len(insert['word']) < PAD_LEN:
        insert['word'].extend([word2id['_pad_']] * pad_count)
        insert['segment'].extend([0] * pad_count)
    else:
        insert['word'] = insert['word'][:PAD_LEN]
        insert['segment'] = insert['segment'][:PAD_LEN]

    assert len(insert['word']) == PAD_LEN and len(insert['segment']) == PAD_LEN and len(insert['position']) == PAD_LEN

    """ 分类 """
    if idx_up + 1 == idx_down and positive < SAMPLE_COUNT/2:
        dataset.append([insert, idx_masked, ids_masked, 1])
        positive += 1
    elif idx_up + 1 != idx_down and negative < SAMPLE_COUNT/2:
        dataset.append([insert, idx_masked, ids_masked, 0])
        negative += 1


def pack(batch):
    _word, _segment, _position, _idx_mask, _ids_mask, _label = list(), list(), list(), list(), list(), list()
    for sample in batch:
        _word.append(sample[0]['word'])
        _segment.append(sample[0]['segment'])
        _position.append(sample[0]['position'])
        _idx_mask.append(sample[1])
        _ids_mask.append(sample[2])
        _label.append(sample[3])

    return torch.tensor(_word), torch.tensor(_segment), torch.tensor(_position), \
           torch.tensor(_idx_mask), torch.tensor(_ids_mask), torch.tensor(_label)


loader = DataLoader(dataset, shuffle=True, batch_size=BATCH_SIZE, collate_fn=pack)

""" 构建模型 """


def gelu(x):
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


class BERT(nn.Module):
    def __init__(self):
        super(BERT, self).__init__()
        self.emb_word = nn.Embedding(len(word2id), HIDDEN_DIM)
        self.emb_segment = nn.Embedding(2, HIDDEN_DIM)
        self.emb_position = nn.Embedding(PAD_LEN, HIDDEN_DIM)
        self.norm = nn.LayerNorm(HIDDEN_DIM)

        self.Q = nn.Linear(HIDDEN_DIM, HEAD_COUNT * HEAD_DIM)
        self.K = nn.Linear(HIDDEN_DIM, HEAD_COUNT * HEAD_DIM)
        self.V = nn.Linear(HIDDEN_DIM, HEAD_COUNT * HEAD_DIM)

        self.mix = nn.Linear(HEAD_COUNT * HEAD_DIM, HIDDEN_DIM)

        self.layer = nn.Sequential(
            nn.Linear(HIDDEN_DIM, HIDDEN_DIM),
            nn.Dropout(0.4),
            nn.Tanh()
        )
        self.classifier = nn.Linear(HIDDEN_DIM, 2)

        self.fc1 = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
        self.fc2 = nn.Linear(HIDDEN_DIM, len(word2id))

    def forward(self, _word, _segment, _position, idx_mask):
        """ 词嵌入 """
        emb = self.norm(self.emb_word(_word) + self.emb_segment(_segment) + self.emb_position(_position))

        for _ in range(BLOCK_COUNT):

            """ 门掩码 """
            door_masked = word.eq(word2id['_pad_'])

            """ 特征向量 & 扩展到多头 """
            q = self.Q(emb).reshape(BATCH_SIZE, HEAD_COUNT, PAD_LEN, HEAD_DIM)
            k = self.K(emb).reshape(BATCH_SIZE, HEAD_COUNT, PAD_LEN, HEAD_DIM)
            v = self.V(emb).reshape(BATCH_SIZE, HEAD_COUNT, PAD_LEN, HEAD_DIM)

            door_masked = door_masked.reshape(BATCH_SIZE, 1, 1, PAD_LEN).repeat(1, HEAD_COUNT, PAD_LEN, 1)

            """ 计算门 """
            door = torch.matmul(q, k.transpose(-1, -2)) / np.sqrt(HIDDEN_DIM)
            door = door.masked_fill(door_masked, -1e5)
            door = nn.Softmax(dim=-1)(door)

            """ 计算值 """
            res = torch.matmul(door, v)

            """ 多头融合 """
            res = res.transpose(1, 2).reshape(BATCH_SIZE, PAD_LEN, HEAD_COUNT * HEAD_DIM)
            res = self.mix(res)

            """ 后处理 """
            emb = self.norm(emb + res)

        prob = self.classifier(self.layer(emb[:, 0]))

        """ 矩阵格式化提取 """
        form = idx_mask.reshape(BATCH_SIZE, PRED_MAX, 1).repeat(1, 1, HIDDEN_DIM)
        vec_mask1 = torch.gather(emb, 1, form)

        """ 矩阵化排除 """
        vec_mask2 = list()
        for s in range(idx_mask.size(0)):
            for k in range(idx_mask.size(1)):
                if idx_mask[s][k] == 0: continue
                vec_mask2.append(vec_mask1[s][k].tolist())
        vec_mask2 = torch.tensor(vec_mask2)

        vec_mask = self.fc2(gelu(self.fc1(vec_mask2)))

        return prob, vec_mask


model = BERT()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)

for i in range(EPOCHS):
    for j, (word, segment, position, idx_masked, ids_masked, label) in enumerate(loader):

        probability, vec_masked = model(word, segment, position, idx_masked)

        """ 矩阵化排除 """
        ids_masked = ids_masked.flatten().tolist()
        ids_masked = torch.tensor([x for x in ids_masked if x != 0])

        loss1 = criterion(probability, label)
        loss2 = criterion(vec_masked, ids_masked)
        loss = loss1 + loss2

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        print("Epoch: {:d}, Batch: {:d}, Loss: {:4f}".format(i, j, loss))
    print("Epoch {:d} finished".format(i))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Bert 压缩模型的源代码可以在以下地址获取: - Bert 原始模型的源代码:https://github.com/google-research/bert 如果你想要使用压缩Bert 模型,你可以参考以下项目: - DistilBert:https://github.com/huggingface/transformers/tree/main/src/transformers/modeling_distilbert - TinyBert:https://github.com/huggingface/transformers/tree/main/src/transformers/modeling_tinybert - MobileBert:https://github.com/huggingface/transformers/tree/main/src/transformers/modeling_mobilebert 这些压缩Bert 模型都是在原始的 Bert 模型的基础上进行了改进和优化,使得它们的模型大小更小,推理速度更快,同时保留了较高的准确率。 ### 回答2: bert压缩模型源码地址可以在GitHub上找到。在GitHub上有许多开源项目,其中有一些是专门为BERT模型压缩而设计的。这些项目通常会提供详细的源代码和使用指南。 一种常见的BERT模型压缩方法是通过稀疏化来减少模型的参数数量。稀疏化可以通过引入稀疏矩阵或掩码的方式来实现。这些方法的目标是识别和删除不重要的参数,从而减少模型的大小。在GitHub上可以找到一些使用这种方法的开源项目,它们提供了压缩BERT模型的源代码。 另一种常见的压缩方法是权重剪枝。这种方法通过将参数的数值范围变得更小来减少模型的体积。通过剪枝掉参数的小值,可以减少模型的参数数量。GitHub上也有一些开源项目提供了使用权重剪枝来压缩BERT模型的源代码。 总之,如果您想要获取BERT模型压缩的源代码地址,建议在GitHub上搜索相关的开源项目,其中会有一些专门为此目的而创建的项目,提供了详细的源代码和使用指南。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值