im2col:将卷积运算转为矩阵相乘

im2col是一种将卷积运算转换为矩阵相乘的技术,提高了计算效率。它通过将输入数据和卷积核展开成矩阵,然后执行矩阵乘法来实现。这种方法虽然会增加内存使用,但利用缓存和高效的矩阵乘法库(如BLAS、MKL)可以加速运算。
摘要由CSDN通过智能技术生成

博客:blog.shinelee.me | 博客园 | CSDN

im2col实现

如何将卷积运算转为矩阵相乘?直接看下面这张图,以下图片来自论文High Performance Convolutional Neural Networks for Document Processing

im2col
上图为3D卷积的传统计算方式与矩阵乘法计算方式的对比,传统卷积运算是将卷积核以滑动窗口的方式在输入图上滑动,当前窗口内对应元素相乘然后求和得到结果,一个窗口一个结果。相乘然后求和恰好也是向量内积的计算方式,所以可以将每个窗口内的元素拉成向量,通过向量内积进行运算,多个窗口的向量放在一起就成了矩阵,每个卷积核也拉成向量,多个卷积核的向量排在一起也成了矩阵,于是,卷积运算转化成了矩阵运算。

下图为转化后的矩阵尺寸,padding为0:
EmzaRO.png
代码上怎么实现呢?这里参看一下SeetaFaceEngine/FaceIdentification/src/conv_net.cpp 中的代码,与上面的图片对照着看比较直观。

int dst_h = (src_h - kernel_h) / stride_h_ + 1; // int src_h = input->height(); int kernel_h = weight->height();
int dst_w = (src_w - kernel_w) / stride_w_ + 1; // int src_w = input->width(); int kernel_w = weight->width();
int end_h = src_h - kernel_h + 1;
int end_w 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值