文本分类-分类器设计

文本分类大致有两种方法:一种是基于训练集的文本分类方法;另一种是基于分类词表的文本分类方法。两种方法出自不同角度的研究者,训练集法更多的来自计算机或人工智能研究领域,而分类表法则更多地来自突出情报领域。本文主要介绍前一种。

基于训练集的文本分类是一种典型的有监督机器学习问题,一般分为训练和分类两个阶段,具体过程如下:

训练阶段:

  1. 定义类别集合,这些类别可是是层次式的,也可以是并列式的。

  2. 给出训练文档集合,每个训练文档被标上所属的类别标识 。

  3. 统计中所有文档的特征向量,确定代表中每个类别的特征向量 。

分类阶段:

  1. 对于测试文档集合中的每个待分类文档,计算其特征向量与每个类别之间的相似度 。

  2. 选取相似度最大的一个类别作为的类别。

有时也可以指定为多个类别,只要与这些类别之间的相似度超过某个预定的阈值。如果与所有类别的相似度均低于阈值,那么通常将文档放在一边,有用户来做最终决定。如果这种情况经常发生,则说明需要修改预定义的类别,然后重新进行上述训练与分类工程。

从训练集中得出分类模式的方法很多,有基于文本特征向量相关性的方法、基于神经网络技术的方法、基于关联的方法、基于EM算法的方法等。

朴素贝叶斯算法

朴素贝叶斯(Naive Bayes)算法的基本思路是计算文本属于类别的概率,文本属于类别的概率等于文本中每个词属于类别的概率的综合表达式。具体算法步骤如下:

  1. 计算特征词(w_i)属于每个类别(j)的概率向量。
    P ( j ∣ w i ) = # w i ∈ c l a s s j # w i P(j |w_i) = \frac{\# w_i \in class_j}{\# w_i} P(jwi)=#wi#wic

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贝叶斯文本分类是一种常用的机器学习算法,可以用于将文本数据进行分类。基于Java和Map/Reduce(MapReduce)框架实现贝叶斯文本分类设计可以分为以下几个步骤: 1. 数据预处理:首先,需要将文本数据进行预处理,包括去除停用词、标点符号、数字等非关键信息,并进行分词操作,将每个文本分割成一个个词语。 2. 计算词语频率:使用Map/Reduce框架,将每个文本中的词语作为键,将出现的频率作为值进行统计。Map阶段将每个文本拆分成词语,并为每个词语设置初始频率为1。Reduce阶段将相同的词语进行合并,并计算总频率。 3. 计算词语条件概率:对于每个类别,需要计算每个词语的条件概率。通过Map阶段将每个词语与它所属的类别作为键值对进行传输。Reduce阶段将相同的词语进行合并,并统计该词语在每个类别中的频率。 4. 计算类别概率:通过Map/Reduce框架,将每个文本中的类别作为键进行传输。Reduce阶段将相同的类别进行合并,并统计该类别在整个文本集中的频率。 5. 应用贝叶斯公式:对于一个新的文本,首先将其进行预处理,并计算出每个词语在各个类别中的条件概率。然后,根据贝叶斯公式,将各个词语的条件概率相乘,再乘以各个类别的概率,最终得到该文本属于每个类别的概率。根据概率大小,将文本分类到最可能的类别。 以上就是基于Java和Map/Reduce实现的贝叶斯文本分类设计。这种设计可以充分利用Map/Reduce框架的并行计算能力,加快计算速度,提高分类器的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值