论文笔记:Depth-supervised NeRF: Fewer Views and Faster Training for Free

文章提出了一种新的方法,利用深度信息来指导神经辐射场(NeRF)的学习,从而在少量视角的情况下也能准确重建3D几何结构。通过设计深度监督的射线终止位置分布损失函数,优化NeRF的训练过程,减少了对大量视角的依赖,加快了训练速度。这种方法利用了SFM获得的深度信息和COLMAP估计的相机参数,确保了射线分布的单峰性,提高了重建的准确性。
摘要由CSDN通过智能技术生成

中文标题:深度信息监督的神经辐射场:需要更少的视角并且更快的训练

解决的问题:

  • 在缺少视野的情况下,神经辐射场不能拟合正确的几何结构。

创新点

  • NeRF的第一步需要对场景图像做SFM(structure from motions),这个过程不光会获得场景间的位姿变换信息,同时会获得一部分特征点的“免费”深度。
  • 使用这些深度信息引导NeRF学习场景几何信息。
  • 设计了一个损失函数鼓励射线终止位置的分布符合3D关键点。

解决方案

由深度监督的射线终止位置

终止位置分布分析
  • 根据NeRF的积分公式,近表面深度为D的图像点的理想射线分布为 δ ( t − D ) \delta (t - D) δ(tD)
    在这里插入图片描述
深度建模及监督
  • (a) 即便绘制出的体密度在穿过多个物体后可能是多峰的,但终止分布仍会是单峰的。
  • (b) 如果在缺乏场景数量的情况下,NeRF有可能学习出多峰(3D结构不清晰)。
  • (c ) NeRF 会随着训练视场数增加而更多呈现出单峰趋势(学习了准确的3D结构)。
深度建模及监督
  • 不同视角下由COLMAP估计得到得相机外参矩阵为 ( P 1 , P 2 , . . . ) (P_1,P_2,...) (P1,P2,...)。同时会得到一系列3D Keypoints { X : x 1 , x 2 , . . . ∈ R 3 } \{X:x_1,x_2,...\in \mathbb{R}^3 \} {X:x1,x2,...R3}, 每一个关键点可以被相机j: X j ∈ X X_j \in X XjX看到。
  • 对于每一张图 I j I_j Ij和相机外参 P j P_j Pj, 我们重投影得到可见关键点 x i ∈ X j x_i \in X_j xiXj的像素坐标以及深度 D i j D_{ij} Dij.
  • 将射线遇到的第一个表面位置建模为随机变量 D i j \mathbb D_{ij} Dij, 该变量正态分布在COLMAP估计的深度 D i j D_{ij} Dij周围,方差为 σ ^ i \hat\sigma_{i} σ^i: D i j ∼ N ( D i j , σ ^ i ) \mathbb D_{ij} \thicksim \mathbb N(D_{ij},\hat\sigma_{i}) DijN(Dij,σ^i)
  • 最终目标是减少渲染权重和加噪深度分布的KL散度
    在这里插入图片描述
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/8cfdd877ae9141ce884a493d9b4ee7b1.png#pic_center

KL散度(Kullback-Leibler divergence):又称为相对熵,衡量两个概率分布的相似性,用 D K L ( P ∣ ∣ Q ) 表示 D_{KL}(P||Q)表示 DKL(P∣∣Q)表示,参考机器学习:KL散度详解
在这里插入图片描述

  • 射线分布损失
    在这里插入图片描述
  • 代码里这里的方差被置为1了。

参考文献

Deng K, Liu A, Zhu J Y, et al. Depth-supervised nerf: Fewer views and faster training for free[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 12882-12891.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlueagleAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值