L0范数图像平滑

本文探讨了L0范数在图像平滑中的重要作用,通过最小化图像梯度L0范数来去除噪声,保留图像边缘。介绍了一维信号和二维图像的处理方法,并提供迭代优化的解决方案。内容包括理论分析、实际应用的代码示例及参考资料。
摘要由CSDN通过智能技术生成

图像平滑是计算摄影学一门基础重要的工具,其作用是拂去不重要的细节,保留较大的图像边缘,主要应用于边缘检测,JPEG压缩图像人工伪迹去除,非真实绘制等领域。

图像平滑应用

图像平滑大体上可以分为两类:基于局部和基于全局方法,基于局部的方法像有名 双边滤波各向异性扩散,将图像分成一些局部块进行处理;全局方法比如全变分( Total Variation)和最小二乘滤波( Weighted Least Square),同时处理整幅图像,可以达到全局最优的目的。
以往的方法,拂去图像中去对图像细节部分也会对图像中大的边缘进行惩罚,这样也会导致图像中大的边缘减弱或丢失,因此徐立等人提出使用图像L0范数平滑,该滤波器是一种基于稀疏策略的全局平滑滤波器。
本文是对香港中文大学徐立等人所做的《Image Smoothing via L0 Gradient Minimization》的读后笔录,也可以看成是论文的翻译吧。使用图像梯度L0范数平滑图像,具有以下优点:

  • 通过去除小的非零梯度,抚平不重要的细节信息
  • 增强图像显著性边缘

图像梯度L0范数最小化

L0范数可以理解为向量中非零元素的个数。
图像梯度L0范数可以如下表示

c(f):=#{ p|fpfp10}

这里 p p+1 是图像中相邻元素, |fpfp1| 就是图像梯度,也即图像的前向差分, #{ } 表示计数,输出图像中满足 |fpfp1|0 的个数,即 c(f) 是图像梯度的L0范数。这样表示有一个优点,就是 c(f) 是非零梯度个数的函数,与图像的梯度本身无关,也就是
#{ p|fpfp10}=#{ p|α(fpfp1)0}

这还不是我们的目标函数,只是一个约束条件。

图像梯度最小化平滑

一维信号

先以一维信号为例,输入信号 g ,输出信号 f ,那么我们的目标函数可以如下表示:

minfp(fpgp)2s.t.c(f)=k

左边使得输入信号与输出信号尽可能接近,右边非零约束梯度个数为 k 。下图依次是 k=1,k=2,k=5,
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值