第一章 神经网络基础

本文详细介绍了逻辑回归的基础知识,包括二分类问题、逻辑回归的符号介绍、Sigmoid函数、代价函数和梯度下降。逻辑回归是神经网络的起点,通过计算图解释了正向传播和反向传播的过程,以及在梯度下降中的应用。
摘要由CSDN通过智能技术生成

1 Logistic回归

1 二分类及符号引入

Logistic回归是一种用于二分类的算法,以特征向量为输入,输出预测结果y的值为0或1的问题被称为二分类问题,下面先引入一些符号以方便后面的学习:

x: 表示一个n_{x}维数据,作为输入数据,维度为(n_{x},1);

y: 表示输出结果,取值为0,1之间的一个;

(x^{(i)},y^{(i)}) :表示第i组样本数据,有可能是训练集,也有可能是测试集,但是学习时默认是训练集;

X=\left [ x^{(1)}, x^{(2)}...,x^{(m)}\right ]: 表示所有训练集数据的输入值,放在一个n_{x}*m的矩阵中,其中m为样本数目;

Y=\left [ y^{(1)}, y^{(2)}...,y^{(m)}\right ]: 表示对应所有预测结果的输出值,维度为

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值