AlexNet系列I:模型参数计算

本文详细介绍了AlexNet的模型参数计算,包括基本结构、超参数、各层输出图像大小以及参数数量。讨论了卷积层、池化层和全连接层的输出尺寸计算,并涉及神经网络的内存占用和计算复杂度。
摘要由CSDN通过智能技术生成

Part I: 计算结果总表

AlexNet基本结构图:

AlexNet模型参数计算总表:

Layer Name Filter Padding Kernel Stride Img size Tensor Size Weights Biases Parameters
Input Image - - - - - 227x227x3 0 0 0
Conv-1 96 0 11 x 11 4 (227-11+2*0)/4+1 = 55 55x55x96 3*(11*11)*96 = 34848
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值