取石子游戏
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3536 Accepted Submission(s): 2080
Problem Description
1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win".
Input
输入有多组.每组第1行是2<=n<2^31. n=0退出.
Output
先取者负输出"Second win". 先取者胜输出"First win".
参看Sample Output.
参看Sample Output.
Sample Input
2 13 10000 0
Sample Output
Second win Second win First win//hdu2156 取石子游戏 //题目大意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完. //以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win". //解题思路:一堆石子,属于巴士博弈。 //由题知,当n=1时,有点矛盾,若先手取1个,不满足题中“先取者第1次可以取任意多个,但不能全部取完”。 //若先手不取,那还叫什么先手。所以n=1时是个特列,先手必须先取,且只有取一个,所以n=1,先手赢; //n=2时,可知先手只能取一个,后手赢; //n=3时,可知先手无论取1、2;都会输,后手赢; //n=4时,可知先手取一个时,先手赢;故此次先手赢; //n=5时,同样,先手可取1、2...4;当取的大于等于2,先手必输,取1时,后手面临4,则后手赢,故后手赢。 //n=6时,当先手取一个时,留给后手5个,由n=5时可知先手必赢。 //n=7时,与六相似,当先手取两个时,先手必赢。 //n=8时,先手取1、2时,剩余7、6;由上可知后手赢;当取大于2时;剩余的能一次被后手去完,故后手赢。 //综上所述,可以看出当n=2、3、5、8时,后手赢,这不就是斐波那契数列吗?其余n=4、6、7时,不属于 //该数列,先手赢。 #include<stdio.h> #include<string.h> #define M 50 int fib[50]; void fibnaqi() { memset(fib,0,sizeof(fib)); fib[0]=1,fib[1]=1; for(int i=2;i<M;i++) { fib[i]=fib[i-1]+fib[i-2]; } } int main() { int n,i; fibnaqi(); while(scanf("%d",&n)&&n) { if(n==1) { printf("First win\n"); continue; } int flag=1; for(i=0;i<M;i++) { if(n==fib[i]) { flag=0;break; } } if(flag) printf("First win\n"); else printf("Second win\n"); } return 0; }