CVPR 2023 精选论文学习笔记:DBARF Deep Bundle-Adjusting Generalizable Neural Radiance Fields

DBARF是一种隐式NeRF,使用神经网络表示场景,适用于多视图和单视图立体数据,支持视图合成、新视点渲染和3D重建。通过深度束调整技术学习相机姿态,实现通用重建。相较于其他方法,DBARF在数据输入多样性、任务范围和表示方式上具有优势。
摘要由CSDN通过智能技术生成

以下是根据 MECE 原则给出的特征:

表示方式

NeRF 可以以两种主要方式表示:隐式或显式。隐式 NeRF 使用神经网络来表示场景中任何点的颜色和密度。这可以实现高质量的渲染,但训练和评估神经网络可能很耗费计算资源。显式 NeRF 使用显式 3D 网格或体素网格来表示场景。这使它们更容易训练和评估,但可能会限制渲染的质量。

数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值