我们采用以下六个分类标准:
- 数据来源:
- 实验研究(随机对照试验 - RCTs): 这类研究被视为评估因果效应的黄金标准,因为随机化过程最大程度地减少了混杂偏差。随机对照试验中,参与者被随机分配到不同的治疗组,从而平衡了潜在的混杂因素在各组之间的分布。
- 观察性研究: 这类研究利用容易获得的数据,但需要强大的假设,如无混杂性假设,这在实践中往往难以验证。在观察性研究中,研究人员不干预治疗分配,而是观察自然发生的情况,因此更容易受到混杂因素的影响。
- 数据融合: 这种方法结合了试验数据和观察数据,以利用两者的优势,旨在提高估计的准确性和稳健性。通过整合不同来源的数据,数据融合方法试图克服单一数据源的局限性,例如随机对照试验样本量小或观察性研究存在混杂偏差等问题。
- 方法论:
- 基于树的方法: 这些方法,如本文提出的FAST,递归地划分特征空间,以识别具有不同治疗效果的子组。基于树的方法通过不断将特征空间划分为更小的子区域,使得每个子区域内的治疗效果更加均匀,从而实现异质性治