FAST: a Fused and Accurate Shrinkage Tree for Heterogeneous Treatment Effects Estimation

我们采用以下六个分类标准:

  1. 数据来源
    • 实验研究(随机对照试验 - RCTs): 这类研究被视为评估因果效应的黄金标准,因为随机化过程最大程度地减少了混杂偏差。随机对照试验中,参与者被随机分配到不同的治疗组,从而平衡了潜在的混杂因素在各组之间的分布。
    • 观察性研究: 这类研究利用容易获得的数据,但需要强大的假设,如无混杂性假设,这在实践中往往难以验证。在观察性研究中,研究人员不干预治疗分配,而是观察自然发生的情况,因此更容易受到混杂因素的影响。
    • 数据融合: 这种方法结合了试验数据和观察数据,以利用两者的优势,旨在提高估计的准确性和稳健性。通过整合不同来源的数据,数据融合方法试图克服单一数据源的局限性,例如随机对照试验样本量小或观察性研究存在混杂偏差等问题。
  2. 方法论
    • 基于树的方法: 这些方法,如本文提出的FAST,递归地划分特征空间,以识别具有不同治疗效果的子组。基于树的方法通过不断将特征空间划分为更小的子区域,使得每个子区域内的治疗效果更加均匀,从而实现异质性治
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值