CVPR 2023: RIAV-MVS Recurrent-Indexing an Asymmetric Volume for Multi-View Stereo

本文介绍了一种名为 RIAV-MVS 的新方法,它融合了深度学习和传统优化策略,通过学习优化和迭代代价体积搜索来估计多视图的深度图。该方法在多视图 RGB 图像上运行,输出密集深度图,并在真实数据集上表现出色。与其他方法相比,RIA-VMS 在匹配策略、优化策略和代价体积构建方面具有创新性。
摘要由CSDN通过智能技术生成

我们使用以下6个分类标准对本文的研究选题进行分析:

1. 匹配策略:

  • 局部 vs. 全局方法:

    • 局部方法: 在图像的小块区域上进行操作,考虑它们的相似性和空间关系。例如 PatchMatch [5] 和 Sum of Squared Differences (SSD)。这些方法效率高,但可能难以处理较大的深度不连续性。
    • 全局方法: 同时考虑整幅图像或场景,以获得全局一致的深度分配。例如 Semi-Global Matching (SGBM) [24] 和深度学习方法 [31]。它们通常能获得更高的精度,但计算成本可能更高。
  • 基于特征 vs. 基于学习的方法:

    • 基于特征的方法: 依赖于手工制作的特征,例如梯度或 Census 变换 [14] 来表示图像内容进行匹配。这些方法具有可解释性,但可能无法捕捉复杂的图像关系。
    • 基于学习的方法: 利用机器学习,特别是卷积神经网络 (CNN) [23],直接从数据中学习匹配函数。它们可以适应复杂的图像模式,但可解释性较差,并且需要大量的训练数据。

2. 输入数据:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值