Scalable Membership Inference Attacks via Quantile Regression

本文探讨了机器学习模型的隐私风险,尤其是成员推理攻击。通过引入分位数回归,提出了一种计算效率更高且适用于黑盒设置的新方法,用于预测攻击阈值。研究使用Logit差异作为检验统计量,对图像分类和表格数据上的CNN及梯度提升决策树模型进行了评估。
摘要由CSDN通过智能技术生成

我们使用以下六个分类标准:

  1. 动机

    • 隐私问题:许多研究背后的主要动机是对机器学习模型相关的隐私风险日益增长的担忧。例如,Shokri等人(2017)和Carlini等人(2022)专注于开发和改进成员推理攻击,以评估模型对隐私泄露的脆弱性。
    • 模型理解:一些研究深入了解机器学习模型的固有属性。Yeom等人(2018)研究过拟合和隐私风险之间的联系,揭示了模型行为如何影响隐私。
    • 改进攻击/防御:研究领域是动态的,不断努力加强攻击和防御机制。Salem等人(2018)探索了与模型和数据无关的成员推理攻击,而Long等人(2020)提出了成员推理的实用方法,展示了该领域不断发展的本质。
  2. 方法论

    • 影子模型:这种广泛使用的技术被Shokri等人(2017)、Long等人(2020)和Carlini等人(2022)所采用,涉及在数据的子集上训练多个影子模型,以模拟目标模型的行为并估计隐私风险。
    • 分位数回归:您上传的论文介绍了一种使用分位数回归来预测成员推理攻击阈值的新方法,为影子模型提供了一种计算效率更高的替代方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值