我们采用以下六个分类标准:
-
数据来源的数量:
- 单一来源: 这涉及压缩来自单个来源的数据,例如来自一台摄像机的图像。JPEG 和 PNG 等传统方法就是单源压缩的例子。
- 分布式来源: 这涉及压缩来自多个、可能存在相关性的来源的数据,例如来自多个摄像机的图像。这里的挑战在于利用相关性来实现更高的压缩效率。本文主要关注这一点,提出了 NDPCA 框架来处理多个相关源。参考文献 [4] 还讨论了分布式多视图图像编码。
-
任务感知:
- 任务不可知: 这些方法旨在最小化原始数据和重构数据之间的差异,而不管数据将如何使用。经典示例包括 JPEG 和 MPEG 压缩标准。参考文献 [2, 3] 也属于这一类,侧重于在不考虑下游任务的情况下重建图像数据。
- 任务感知: 这些方法优先保留对特定任务(例如对象检测)至关重要的信息。这可能会导致更高的重建误差,但会提高任务性能。本文的 NDPCA 框架旨在实现任务感知,并针对下游任务进行优化。参考文献 [5, 6, 7] 还探讨了任务感知压缩,但它们侧重于单一来源。
-
压缩方法:
- 传统(非神经&#