前言
在很久之前也写过一篇关于AVL树的文章,不过是纯理论,结合之前和本文可以让你对AVL树彻底掌握,感兴趣的小伙伴可以去看看https://blog.csdn.net/boyas/article/details/118278865
平衡二叉树
- 对于任意一个节点,左子树和右子树的高度差不能为超过1
- 平衡二叉树的高度和节点数量,之间的关系也是O(logn)
package AVL树;
import java.util.ArrayList;
/**
* 描述 package AVL树;
*
* @author lixinzhen
* @create 2021/11/12 11:18
*/
public class AVLTree<K extends Comparable<K>, V> {
private class Node {
public K key;
public V value;
public Node left, right;
public int height;
public Node(K key, V value) {
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}
private Node root;
private int size;
public AVLTree() {
root = null;
size = 0;
}
public boolean isEmpty() {
return size == 0;
}
//获得节点node的高度
private int getHeight(Node node) {
if (node == null)
return 0;
return node.height;
}
//获得节点node的平衡因子
public int getBalanceFactor(Node node) {
if (node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}
检查二分搜索树的性质和平衡性
- 判断一个树是否为二分搜索树,只要中序遍历是递增的就是二分搜索树。
//判断该二叉树是否是一棵二分搜索树
public boolean isBST() {
ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for (int i = 0; i < keys.size(); i++) {
if (keys.get(i - 1).compareTo(keys.get(i)) > 0)
return false;
}
return true;
}
private void inOrder(Node node, ArrayList<K> keys) {
if (node == null)
return;
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
- 判断一个树是否为平衡二叉树,只要任意一个节点的左右子树的高度差不超过1。
//判断该二叉树是否是一颗平衡二叉树
public boolean isBalanced() {
return isBalanced(root);
}
//判断以Node为根的二叉树是否是一颗平衡二叉树,递归算法
private boolean isBalanced(Node node) {
if (node == null)
return true;
int balanceFactor = getBalanceFactor(node);
if (Math.abs(balanceFactor) > 1)
return false;
return isBalanced(node.left) && isBalanced(node.right);
}
旋转操作的基本原理
在什么时候维护平衡?
- 插入的元素在不平衡的节点的左侧的左侧(如图),可以通过右旋转解决。
- 插入的元素在不平衡的节点的右侧的右侧,可以通过左旋转在解决。
右旋转:通过以下两次操作达到平衡二叉树(也是二分搜索树),如下图,画的还可以吧,嘤嘤嘤。
x.right = y;
y.left = T3;
代码实现:
//对节点y进行向右旋转操作,返回旋转后新的根节点x
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
//向右旋转过程
x.right = y;
y.left = T3;
//更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
左旋转:通过以下两次操作可以达到平衡二叉树(也是二分搜索树),嗯,这次图画的更不错了,嗯哼。
x.left = y;
y.right = T3;
代码实现:
//对节点y进行向左旋转操作,返回旋转后新的根节点x
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
//向左旋转过程
x.left = y;
y.right = T2;
//更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
维护平衡:
//向二分搜索树中添加新的元素(key,value)
public void add(K key, V value) {
root = add(root, key, value);
}
//向以node为根的二分搜索树中插入元素(key,value),递归算法
//返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value) {
if (node == null) {
size++;
return new Node(key, value);
}
if (key.compareTo(node.key) < 0) {
node.left = add(node.left, key, value);
} else if (key.compareTo(node.key) > 0) {
node.right = add(node.right, key, value);
} else
node.value = value;
//更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
//计算平衡因子
int balanceFactor = getBalanceFactor(node);
if (Math.abs(balanceFactor) > 1)
System.out.println("unbalanced:" + balanceFactor);
//平衡维护
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
return node;
}