AVL树 —— 个人解读

前言

在很久之前也写过一篇关于AVL树的文章,不过是纯理论,结合之前和本文可以让你对AVL树彻底掌握,感兴趣的小伙伴可以去看看https://blog.csdn.net/boyas/article/details/118278865

平衡二叉树

  • 对于任意一个节点,左子树和右子树的高度差不能为超过1
  • 平衡二叉树的高度和节点数量,之间的关系也是O(logn)
package AVL树;

import java.util.ArrayList;

/**
 * 描述     package AVL树;
 *
 * @author lixinzhen
 * @create 2021/11/12 11:18
 */
public class AVLTree<K extends Comparable<K>, V> {
    private class Node {
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value) {
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree() {
        root = null;
        size = 0;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    //获得节点node的高度
    private int getHeight(Node node) {
        if (node == null)
            return 0;
        return node.height;
    }

    //获得节点node的平衡因子
    public int getBalanceFactor(Node node) {
        if (node == null)
            return 0;
        return getHeight(node.left) - getHeight(node.right);
    }

检查二分搜索树的性质和平衡性

  • 判断一个树是否为二分搜索树,只要中序遍历是递增的就是二分搜索树。
//判断该二叉树是否是一棵二分搜索树
    public boolean isBST() {
        ArrayList<K> keys = new ArrayList<>();
        inOrder(root, keys);
        for (int i = 0; i < keys.size(); i++) {
            if (keys.get(i - 1).compareTo(keys.get(i)) > 0)
                return false;
        }
        return true;
    }

    private void inOrder(Node node, ArrayList<K> keys) {
        if (node == null)
            return;
        inOrder(node.left, keys);
        keys.add(node.key);
        inOrder(node.right, keys);
    }
  • 判断一个树是否为平衡二叉树,只要任意一个节点的左右子树的高度差不超过1。
  //判断该二叉树是否是一颗平衡二叉树
    public boolean isBalanced() {
        return isBalanced(root);
    }

    //判断以Node为根的二叉树是否是一颗平衡二叉树,递归算法
    private boolean isBalanced(Node node) {
        if (node == null)
            return true;
        int balanceFactor = getBalanceFactor(node);
        if (Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

旋转操作的基本原理

在什么时候维护平衡?

  1. 插入的元素在不平衡的节点的左侧的左侧(如图),可以通过右旋转解决。
  2. 插入的元素在不平衡的节点的右侧的右侧,可以通过左旋转在解决。

在这里插入图片描述
右旋转:通过以下两次操作达到平衡二叉树(也是二分搜索树),如下图,画的还可以吧,嘤嘤嘤。

x.right = y;
y.left = T3;

在这里插入图片描述
代码实现:

  //对节点y进行向右旋转操作,返回旋转后新的根节点x
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        //向右旋转过程
        x.right = y;
        y.left = T3;

        //更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

左旋转:通过以下两次操作可以达到平衡二叉树(也是二分搜索树),嗯,这次图画的更不错了,嗯哼。

x.left = y;
y.right = T3;

在这里插入图片描述
代码实现:

//对节点y进行向左旋转操作,返回旋转后新的根节点x
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        //向左旋转过程
        x.left = y;
        y.right = T2;

        //更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

维护平衡:

 //向二分搜索树中添加新的元素(key,value)
    public void add(K key, V value) {
        root = add(root, key, value);
    }

    //向以node为根的二分搜索树中插入元素(key,value),递归算法
    //返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value) {
        if (node == null) {
            size++;
            return new Node(key, value);
        }
        if (key.compareTo(node.key) < 0) {
            node.left = add(node.left, key, value);
        } else if (key.compareTo(node.key) > 0) {
            node.right = add(node.right, key, value);
        } else
            node.value = value;

        //更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        //计算平衡因子
        int balanceFactor = getBalanceFactor(node);
        if (Math.abs(balanceFactor) > 1)
            System.out.println("unbalanced:" + balanceFactor);

        //平衡维护
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        return node;

    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

༄༊心灵骇客༣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值