并查集 —— 个人解读

本文介绍了并查集这一数据结构,用于管理分组数据,支持union和isConnected操作。并提供了两种实现:QuickFind和QuickUnion。QuickFind中,通过数组直接查找元素所属集合,合并操作时间复杂度为O(n);QuickUnion则利用父节点指针,查询和合并的时间复杂度为树的高度O(h)。
摘要由CSDN通过智能技术生成

什么是并查集

并查集(Union Find)是一种用于管理分组的数据结构。

对于一组数据,主要支持两个动作:

  • union(p,q)
  • isConnected(p,q)

对于并查集,我们设计一个interfaceUF来看两个元素是否所属一个集合(是否连接的),以及合并两个元素。

public interface UF {

    int getSize();

    boolean isConnected(int p, int q);

    void unionElements(int p, int q);
}

对于并查集,像线段树那样,并不添加或删除某个元素,只是查和并的操作。

Quick Find(第一版并查集)

使用数组进行模拟并查集的操作。
在这里插入图片描述

package 并查集;

/**
 * 描述     第一版并查集
 * Quick Find下的Union时间复杂度是O(n)
 *
 * @author lixinzhen
 * @create 2021/11/10 21:01
 */
public class UnionFind1 implements UF {
    private int[] id;

    public UnionFind1(int size) {
        id = new int[size];
        for (int i = 0; i < id.length; i++) {
            id[i] = i;
        }
    }

    @Override
    public int getSize() {
        return id.length;
    }

    //查找元素p所对应的集合编号
    private int find(int p) {
        if (p < 0 && p >= id.length)
            throw new IllegalArgumentException("p is out of bound");
        return id[p];
    }

    //查看元素p和元素q是否所属一个集合(时间复杂度为O(1))
    @Override
    public boolean isConnected(int p, int q) {
        return find(p) == find(q);
    }

    //合并元素p和元素q所属的集合(时间复杂度为O(n))
    @Override
    public void unionElements(int p, int q) {
        int pID = find(p);
        int qID = find(q);

        if (pID == qID)
            return;
        for (int i = 0; i < id.length; i++) {
            if (id[i] == pID)
                id[i] = qID;
        }
    }
}

Quick Union(第二版并查集)

将每一个元素,看作一个节点,由子节点指向父节点。

初始情况下这个森林有10个树,每个树读只有一个节点。
在这里插入图片描述

假设union6,5,那么6指向5
在这里插入图片描述
查询和合并的时间复杂度都是树的高度。

package 并查集;

/**
 * 描述     第二版并查集
 *
 * @author lixinzhen
 * @create 2021/11/10 21:33
 */
public class UnionFind2 implements UF {
    private int[] parent;

    public UnionFind2(int size) {
        parent = new int[size];
        for (int i = 0; i < parent.length; i++) {
            parent[i] = i;//每个节点指向自己,独立的树
        }
    }

    @Override
    public int getSize() {
        return parent.length;
    }

    //查找过程,查找元素p对应的集合编号
    //O(h)复杂度,h为树的高度
    private int find(int p) {
        if (p < 0 && p >= parent.length)
            throw new IllegalArgumentException("p is out of bound");
        while (p != parent[p])
            p = parent[p];
        return p;
    }

    //查看元素p和元素q是否所属一个集合
    //O(h)复杂度,h为树的高度
    @Override
    public boolean isConnected(int p, int q) {
        return find(p) == find(q);
    }

    //合并元素p和元素q所属的集合
    //O(h)复杂度,h为树的高度
    @Override
    public void unionElements(int p, int q) {
        int pRoot = find(p);
        int qRoot = find(q);
        if (pRoot == qRoot)
            return;
        parent[pRoot] = qRoot;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

༄༊心灵骇客༣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值