源自于学校课题,主要用卡尔曼滤波KF及其扩展方法(包括扩展卡尔曼滤波EKF、Sigma点卡尔曼滤波SPKF和集合卡尔曼滤波EnKF)实现多传感器数据的融合。
卡尔曼滤波的原理和几个经典方程其他博客中已经讨论的很详细了,在这里简单整理一下个人的理解,包括各种卡尔曼滤波的不同和具体的使用方法等,以定位系统为例。
如有错误,欢迎指正。
卡尔曼滤波
传统的卡尔曼滤波(KF)适用于线性系统(也就是转移方程和观测方程都是线性的),如下图所示。
- X是系统的状态量,比如定位系统中状态量可以是待测目标的坐标、速度等,也就是系统最终要求的东西。第一个式子是转移方程,从上一时刻的系统状态估计值推导出该时刻的系统状态估计值;
- 第二个式子是观测方程,通过该时刻的系统状态估计值推导出观测量的估计值,这里的Y就是观测量 。其实这个式子就是表明了系统状态X和观测量Y的关系,观测量可以来源于不同的传感器,比如GPS测到的坐标,惯性传感器转换得到的速度、角度等。
状态量和观测量的概念要分清,状态量是要求的目标,观测量可以理解为是用来修正状态量的辅助信息
下面具体介绍一下KF的执行步骤。
KF分为预测(也叫时间更新)和更新(也叫状态