【实用版】卡尔曼滤波及其扩展方法的区别与定位系统中的应用

本文简述了卡尔曼滤波的基本原理,并探讨了扩展卡尔曼滤波(EKF)、Sigma点卡尔曼滤波(SPKF)和集合卡尔曼滤波(EnKF)的区别。通过一个定位系统的实例,展示了如何在非线性系统中应用这些滤波方法,以及如何根据不同的观测量确定转移和观测方程。
摘要由CSDN通过智能技术生成

卡尔曼滤波及其扩展方法的区别与定位系统中的应用


源自于学校课题,主要用卡尔曼滤波KF及其扩展方法(包括扩展卡尔曼滤波EKF、Sigma点卡尔曼滤波SPKF和集合卡尔曼滤波EnKF)实现多传感器数据的融合。

卡尔曼滤波的原理和几个经典方程其他博客中已经讨论的很详细了,在这里简单整理一下个人的理解,包括各种卡尔曼滤波的不同和具体的使用方法等,以定位系统为例。

如有错误,欢迎指正。

卡尔曼滤波

传统的卡尔曼滤波(KF)适用于线性系统(也就是转移方程和观测方程都是线性的),如下图所示。
系统方程

  1. X是系统的状态量,比如定位系统中状态量可以是待测目标的坐标、速度等,也就是系统最终要求的东西。第一个式子是转移方程,从上一时刻的系统状态估计值推导出该时刻的系统状态估计值;
  2. 第二个式子是观测方程,通过该时刻的系统状态估计值推导出观测量的估计值,这里的Y就是观测量 。其实这个式子就是表明了系统状态X和观测量Y的关系,观测量可以来源于不同的传感器,比如GPS测到的坐标,惯性传感器转换得到的速度、角度等。

状态量和观测量的概念要分清,状态量是要求的目标,观测量可以理解为是用来修正状态量的辅助信息

下面具体介绍一下KF的执行步骤。
KF分为预测(也叫时间更新)和更新(也叫状态

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值