图像基本变换---图像快速高斯模糊算法

本文详细介绍了高斯滤波器的原理和在图像处理中的应用,包括一维和二维高斯函数,以及如何计算高斯模板。通过分解公式实现快速算法,提高图像处理效率。
摘要由CSDN通过智能技术生成

本文将详细介绍经典高斯滤波的相关内容。

高斯滤波器实质上是一种信号的滤波器,其用途是信号的平滑处理。它是一类根据高斯函数的形状来选择权重的线性平滑滤波器,该滤波器对于抑制服从正态分布的噪声非常有效。高斯函数的公式如下所示:

一维高斯函数:

               

二维高斯函数:

                         

对于二维高斯函数,它的分布如下图所示:

Fig.1二维Gauss分布

对于二维高斯函数,我们设置两个参数:高斯半径r和方差sigma,由半径r我们可以得到一个(2r+1)*(2r+1)大小的高斯核模板,计算函数代码如下(其中k是高斯模板的权系数,即归一化系数):

private static double[,] GaussFuc(int rdouble sigma)

        {

            int size = 2 * r + 1;

            double[,] gaussResult = new double[sizesize];

            double k = 0.0;

            for (int y = -rh = 0; y <= ry++, h++)

            {

                for (int x = -rw = 0; x <= rx++, w++)

                {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值