【深度学习】多通道图像卷积过程及计算方式

之前,有写了一篇博文,【深度学习入门】——亲手实现图像卷积操作介绍卷积的相应知识,但那篇文章更多的是以滤波器的角度去讲解卷积。但实际上是神经网络中该博文内容并不适应。

之前的文章为了便于演示,针对的是二维卷积,比如一张图片有 RGB 三个颜色通道,我的方式是每个通道单独卷积,然后将各个通道合成一张图片,再可视化出来。但真实工程不会是这样的,很多东西需要进一步说明白。

熟悉 TensorFlow 的同学大概对这个函数比较熟悉。

tf.nn.conv2d(
    input,
    filter,
    strides,
    padding,
    use_cudnn_on_gpu=True,
    data_format='NHWC',
    dilations=[1, 1, 1, 1],
    name=None
)

其中 input 自然是卷积的输入,而 filter 自然就是滤波器。
它们的格式说明如下:

input:
[batch, in_height, in_width, in_channels]

filter
[filter_height, filter_width, in_channels, out_channels]

input 的 4 个参数很好理解,分别是批数量、高、宽、通道数。

但是,我当时在学习时有一个疑惑不能理解,那就是为什么 filter 有 2 个通道相关的参数呢?

按照网络上的建议,我大概知道 input 的 in_channels 和 filter 的 in_channels 要对应起来,而 out_channels 是卷积后生成的 featuremap 的通道数量,但是其中的计算细节,我并不知道。

为什么颜色通道为 3 的图像,经过卷积后,它的通道数量可以变成 128 或者其它呢?这是我的疑问。

后来,我发现自己有这个疑问是因为对卷积的概念理解不清楚。

我误以为,卷积过程中滤波器是 2 维的,只有宽高,通道数为 1.

这里写图片描述

实际上,真实的情况是,卷积过程中,输入层有多少个通道,滤波器就要有多少个通道,但是滤波器的数量是任意的,滤波器的数量决定了卷积后 featuremap 的通道数。

在这里插入图片描述

如果把输入当做一个立方体的话,那么 filter 也是一个立方体,它们卷积的结果也是一个立方体,并且上面中 input、filter、Result 的通道都是一致的。

但卷积过程的最后一步要包括生成 feature,很简单,将 Result 各个通道对应坐标的值相加就生成了 feature,相当于将多维的 Result 压缩成了 2 维的 feature。

可能有同学会问,为什么需要压缩 Result 到 2 维呢?

我们回顾,卷积的公式。

y ( n ) = ∑ i = − ∞ ∞ x ( i

  • 150
    点赞
  • 337
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 42
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种常用于图像、语音处理等领域的深度学习模型。卷积层是CNN中至关重要的一个层,其作用是对输入数据进行卷积操作,提取出特征信息。 下面是卷积神经网络卷积过程: 1. 输入数据:CNN接受的输入数据通常是一个三维张量,分别代表数据的高度、宽度和深度(即通道数),比如一张RGB图像就是高度、宽度和深度分别为$h$、$w$、$c$的三维张量。 2. 卷积核:卷积核是CNN中的一个重要参数,它是一个小的二维张量,通常大小为$k_h \times k_w$,其中$k_h$和$k_w$分别表示卷积核的高度和宽度,卷积核的深度与输入数据的深度相同。卷积核中的每一个元素都是一个可训练参数,即CNN模型会自动学习到这些参数的最优值。 3. 填充(Padding):为了保持输入和输出的大小一致,通常会在输入数据的边缘进行填充操作。填充的大小为$p$,通常为1或2。如果不进行填充,则卷积操作会使得输出的大小变小。 4. 步长(Stride):卷积核在进行卷积操作时,每次移动的距离称为步长。步长的大小通常为1或2。如果步长为1,则每次移动一个像素;如果步长为2,则每次移动两个像素。 5. 卷积操作:卷积操作是将卷积核在输入数据上进行滑动,计算卷积核与输入数据对应位置的乘积,再进行求和得到输出的数值。具体来说,假设输入数据为$X$,卷积核为$K$,输出数据为$Y$,则卷积操作可以表示为: $$ Y_{i,j}=\sum_{m=0}^{k_h-1}\sum_{n=0}^{k_w-1}\sum_{c=0}^{C-1}X_{i+m,j+n,c}\cdot K_{m,n,c}+b $$ 其中,$i$和$j$分别表示输出数据张量的高度和宽度坐标,$m$和$n$分别表示卷积核的高度和宽度坐标,$c$表示输入数据的深度,$C$表示输入数据的通道数,$b$是偏置项。 6. 激活函数:卷积操作后,通常需要对输出数据进行激活函数操作,比如ReLU、sigmoid等。 7. 输出数据:经过卷积操作和激活函数后,得到输出数据,其大小与输入数据相同,但深度可能会有所改变。 以上就是卷积神经网络卷积过程。在实际应用中,通常会有多个卷积层以及其他类型的层组合在一起,形成一个完整的深度神经网络模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frank909

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值